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Relaxation towards localized vorticity states in drift plasma and geostrophic flows

) Olivier Agullo*
Equipe Dynamique des Systes Complexes, PIIM, Centre Universitaire de Saimbde, F-13397 Marseille Cedex 20, Frarice

_ Alberto Vergd
Institut de Recherche sur les Rimmaes Hors Fuilibre, 49, rue F. Joliot-Curie, Boe Postal 146, 13384 Marseille, Frante
(Received 25 September 2003; published 28 May 2004

The drift of ions in a magnetized plasma or the height fluctuations of a rotating fluid layer are described by
the conservation equation of a potential vorticity. This potential vorticity contains an intrinsic length scale, the
hybrid Larmor radius in plasma, and the Rossby length in the quasigeostrophic flow. The influence of this scale
in the evolution of a random initial vorticity field is investigated using a thermodynamic approach. In contrast
to the perfect fluid case, where the vorticity tends to a well defined stationary state, complete relaxation
towards an equilibrium state is not observed in numerical simulations of quasigeostrophic decaying turbulence.
The absence of global thermodynamic equilibrium is explained by the relaxation towards std¢eslof
equilibrium where the vorticity is concentrated. The interaction between these separated regions is extremely
weak. Explicit, axisymmetric, localized solutions of the mean field integrodifferential equation of extremal
entropy states are obtained using asymptotic methods. A comparison of the computed solutions with the
observed coherent structures shows that they effectively correspond to states in local thermodynamic equilib-
rium.
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I. INTRODUCTION n= noee(MTe,

A class of plasmas and fluid flows can be described, afyperen, stands for the equilibrium plasma densiy, for
least approximately, by the conservation of a potential voryha electron temperatuf@ energy units ande for the elec-

ticity. This is the case of the drift motion of ions in a Mag- 4oy charge. Using this expression for the ion continuity
netized plasma, or of the flow of a rotating fluid layer Some'equation is given by

times called quasigeostrophic flow. For such systems the

potential vorticity satisfies a two-dimensional Euler equation, D (e
expressing the conservation of the potential vorticity along Veo=- E<T_> 3
the streamlines. The relation between potential vorti€lty €
and stream functiony is given by whereuw is the ion velocity, and/Dt is the total derivative
dldt+v-V. The motion equation is
Q=—Ay+yl?, (1)
D
where | is some intrinsic length, and\ is the two- DiV= T Yo erX2 (4)
dimensional Laplacian. The evolution equation for the poten- '
tial vorticity is then where we neglected the ion pressure with respect to the Lor-
entz force, the right hand side of E¢4) (we consider a
@JF[Q 1=0 2 plasma with the electron temperature much larger than the
ot Y1=0, ion one. In this equationm; is the ion mass, ando,

=eB/m; the cyclotron frequency.
wheret is the time, and-,-] is the Poisson bracket. Before proceeding, it is interesting to note that E(@.

In order to clearly state the physical nature of E), and  and(4) are similar to the hydrodynamic equations describing
the origin of the intrinsic length, let us consider first, the the motion of a rotating fluid layer of height=H,+h (H,
slow motion of ions in a homogeneous, magnetized plasmas the mean width of the laygrin which the pressure is
The uniform magnetic field is supposed to be along zhe proportional to the variations of the layer widtlix,y,t). We
direction,B=BZ, and all physical quantities depend on the assume, as in the shallow water approximation, that the fluid
(x,y) coordinates. We assume the plasma quasi-neutral, anglyer is thin with respect to the characteristic scales of the
the electrons adiabatic. The density of iomsan then be horizontal motion. We may identify the height variations
related to the electrostatic potentialby the Boltzmann law  with the electrostatic potential, and the magnetic force with

the Coriolis force(we neglect variations of the rotation fre-
quency, the so-called “beta” effect in geostrophic flowin
*Electronic address: agullo@up.univ-mrs.fr such a case we would have
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or, equivalently, later in plasma$1], and Jupiter’s red spd2]. A systematic
comparison of both flows was made by Hasegawa, Maclen-
nan and Kodam&3]; more recently Psceli and Trulser4]
investigated some of their statistical properties, and Wa-
tanabe, lwayama and Fujisa®] performed numerical
and simulations of the evolution of an initially random state. The
more general case of the shallow water system, a compress-
ible fluid layer in a rotating frame, was studied by Chavanis
and Sommerid6]. Hopfinger and van Heijst7] surveyed
several topics on vortices in rotating fluids. A review on the
whereg is the acceleration due to gravity, arié? is the  analogy between drift plasma and geophysical flows, includ-
rotation frequency. These equations, which describe thghg several generalizations, in particular on nonlinear effects,
quasigeostrophic flow, are formally equivalent to the plasmagan be found in Ref8].
equations(3) and(4). One important feature of these systems is that a superpo-
In the plasma case we can form a characteristic lengthition of point vortices, sometimes called screened vortices
from the so-called hybrid sound speef=T./m; appearing or Stewart vortices, are exact solutions (&, in much the
in the electrostatic force term, and the cyclotron frequencysame way as for the Euler caf®,10]. At variance to the
to obtain the hybrid Larmor radiug =cs/w.. In the fluid  usual Euler log() interaction ¢ is the distance between two
case, the characteristic speed:fs=gH,, and the character- point vortices, geostrophic point vortices ¢®) interact with
istic length islg=c/f, the Rossby lengthf(is in this case K(r/l) law, where kK is the modified Bessel functioiAl-
the characteristic frequencyThe plasma and fluid systems though “Euler” and “geostrophic” are not fully appropriated
are thus equivalent provided we identiép/T, andh/Hy,  denominations, we use them for simplicityVe remark that
and take length and time unit$ (1/w.) or (Ig,1/f) respec- for an Euler flow there is no characteristic length, other than
tively. those related to initial conditions. The change ar, with a
As our objective is to obtain an equation for the vorticity an arbitrary constant, lets invariant the equation of motion of
w=(V Xuw)-Z (only thez component of the vorticity is not point vortices, and also Euler equation, after an appropriated
zero, in these two-dimensional systgmwe compute the change in the time units. On the other hand, the interaction of
rotational of Eq.(4): point vortices in the geostrophic flow involves the character-
istic lengthl, and obviously the motion of vortices explicitly
®) depends on this scale. Systems of Euler and geostrophic
point vortices might then behave differently, as usually hap-

) . ) ) ) pens between long and short range interacting particle sys-
Since we are interested in the slow motion of idos the  tems.

slow variations of the layer widihwe assume that the tem-
poral variations of the electrostatic fluctuations is much
smaller than the cyclotron frequendy/dt|<w., which Statistical mechanics of turbulence
means that in the first approximation the vorticity is given by
the drift velocity

h
1+ —) (6)

Voo 2|
TETBC T,

D ~
o= —gVh+foxz, @

1 D

 wt o Dt“"

Vo=

The possibility of approximating the vorticity flow by a
superposition of point vortices, led to the idea that two-

w~—VX(VpX2B)-2, dimensional turbulence can be described using the usual sta-

tistical methods for Hamiltonian systems. In 1949, Onsager

and then, [11] settled the bases of a thermodynamic approach to hy-
drodynamics. He demonstrated in particular that the phase

wzwclfA(e¢/Te)<wc. space of a system of point vortices has finite volume and

consequently states of negative temperature are thermody-

In the case of the geostrophic flows, the equivalent approxinamically accessible. Negative temperature states are charac-
mation is that of a small Rossby numbefw;. Therefore, terized by the formation of clusters of like circulation vorti-
we can neglect» with respect tow, in (8), and combine it ces. In the Euler case, as the interaction range is infinite, this
with (3), to finally obtain the conservation equation, process continues up to the formation of vortices whose size
is comparable to the size of the system, and a global equi-
librium state is predicted. An analogous thermodynamical
approach is valid for the quasigeostrophic flow, wéhre-
placed byw, and, therefore, this global state should also be
which can easily be transformed to the generalized Eulefeached in this casghis is the generally accepted viewpoint;
equation(2), by identifying the electrostatic potential with see Ref[6]). However, and this is the subject of the present
the stream functiony= — wl 2ed/T,, or y=—fc?h/Hy in  paper, due to the short range interaction of geostrophic vor-
the fluid case, and with the vorticity given hy=—A¢ in  tices, localized distribution of vorticity may develdps is
both cases. the case for the Hasegawa-Mima sys{dr]). In such a case

Interest in this type of equations started with the study ofdistant vortices will interact weakly, leading to a very slow
atmospheric motion in the geostrophic approximation, andelaxation towards equilibrium, slower than any relevant

D 2
oi(Ad—eNd)=0, ©
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time, as for instance, viscous time, and the appropriat&V/e note that due to the first term in the right hand siolel)

asymptotic state of the system will be not longer a global butan change its sign near the origigr small enough for

a local thermodynamic state. negative temperaturgd<<0. This can be shown by a simple
The theory of Onsager was extensively studied, first tcanalogy with the one-dimensional motion of a particle in a

systematically derive the relevant thermodynamic quantitiepotentialV, (A =d?/dx? becomes the acceleration of the par-

as the free energy, using microcanonical or canonical aptcle, if we interpret the coordinate as the timg

proaches to the point vortex systefi3—16, and later to 5 5

incorporate into the statistical formalism the continuous dis- d*yldx*=w=—dW(¢)/dy,

tribution of vorticity and the infinite number of invariants 2 1n12

other than energy and enstropfy7,18|. V== 12"~ acoshi BI'¢)/ BT".
One important result of these works is that the most prob-

o L This equation allows us to see that two cases arise: when
able state(wh!ch IS an gxtremum of the free ene}gg given >0 only the solution/=0 exists; and, whe8<0 two other
by a Debye like equation for an electrolyte, relating the vor-

ticity to the current function: solutions appear. Thig c_:hange in sign, implies then the exis-

' tence of two local minima, separated by a separatrix. The
O=a, e FV—q eflY (100  Motion on the separatrix is localized in space, it approaches
zero exponentially fast in both directions, the “period” of the
motion becomes infinite.

Therefore, the presence of an intrinsic length opens the
possibility of localized distributions of vorticityat local
equilibrium, weakly interacting with other structures. The es-
sential ingredient is the short range interaction associated
fwith this length. The existence of such regions may also be
related to the fact that the area of vortices generally dimin-
ishes after fusio20], the distance between vortices tends
then to increase. Let us assume that the size of the system is
L much greater than the interaction length, and introduce an
intermediate scall such that the system can be divided into

any boxes of sizh;, | <Ig=<L. (Note that this hierarchy of

cales cannot in general be introduced in Euler flows; we
discuss this point later in Sec.)Mf the boxes are large
i i ) : enough and interactions between two boxes are negligible
proportional to expBI'y), giving directly an equation of the (confined to a layer of sizB), it is natural to think that they

type of Eq.(10). In fact the analogy of the vortex system should evolve to different and independent thermodynamic

with a systen’: of Coulomb"mteractl_ng particles is rather.m's'states, relaxation to an equilibriurtstatistical stationary
leading: the “temperature” of vortices can take both signs

11 dth i h tate being faster than mixing of distant boxes.
[11], and the negative temperature states are the most rel-; goc %)) \ye investigate the phenomenology of this sys-

evant in hydrodynamics. Another analogy which was somesey, 1 test the scenario of slow relaxation. A brief account of

times exploited n the literature is to compare t(m)mt) the thermodynamical formalism is given in Sec. lll, followed
vortex systems with a stellar system, interacting with the, gec v, where we compute explicit solutions of the ther-
gravitational potentialsee, e.g., Re{.19)). However, in ad- ,4vnamic equation. A comparison is also made between
dition that for stars only attractive interactions are allowed’the(almost stationary vortices found in the numerical simu-
the Hamiltonian possesses bOth. kinetic and poten_ua}l €N€ations and the solutions of the thermodynamic equations.
gles, afnd then the phase space is not bounded as it is in ﬂ@ﬁlr main conclusion, presented in Sec. V, is that in contrast
case of a vortex system. . . to the decaying two-dimensional Navier-Stokes “turbu-

. The mtegrodlfferennal equa_tlotflO) eSta_b“SheS a fu_nc- lence,” for which the system attains a well defined thermo-
tional relationQQ=Q(y). Clearly, its solution is also a station- dynamic state(see however, the discussions in Ref1]

ary exact solution of Eq(2) because the Poisson bracket and [22]), the geostrophic decaying turbulence evolves to-

van!sh_es identically. If th_e usual hypoyhe5|s on the validity ofy 54 5 peculiar turbulent state, characterized by a superpo-
statistical thermodynamics are satisfied, the system evolv

; 2 - : &ition of coherent vortices in local thermodynamic equilib-
from an arbitrary initial state to a stationary state with pre-ium

cisely this distribution of vorticity. However, one important
difference might exist in the nature of the equilibrium states,
between rotation dominated flows and Euler flows. This dif-
ference would be related to the intrinsic length, which adds a
term /12 to the potential vorticity. Indeed, suppose that The pioneering experiments of Coud@3] showed that
a_=a,=al2(this is not essential to the present argument two-dimensional turbulence is dominated by the interaction

where B is a parameter, like a Lagrange multiplier, equiva-
lent to the inverse of a temperaturete, however, thgs has
the dimensions of an ared over an energy «. are two
constants which take into account that the integral of Eq
(10) over the entire fluid domaim, should vanish. A very
simple explanation of this formula is given by the analogy o
the vortex system, which satisfy the Poisson equation

—Ay=0—ylI?=o(y), (11)

and a dilute electrolyte. The vorticity is equivalent to the
charge density, and the stream function to the mean fiel
electrostatic potential. The equilibrium distribution of vorti-
ces(charges, in this analogyis the Boltzmann distribution,

II. NUMERICAL SIMULATIONS OF DECAYING
TURBULENCE AND RELAXATION

and thenw=w(¢) in Eq. (11) is given by of coherent vortices. In these experiments, turbulence was
generated on a thin soap film flowing through a grid. The
w(h)=—Yl1?>— asinh( BT ). (12 system freely evolved by successive merging of vortices, in
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TABLE I. Simulation parameters. IC stand for the type of initial

conditions. Type 1 is a random distribution of vorticity. Type 2 100 *==w =y T 6 iy ]
consists of a superposition of a few Fourier modes. The last columr gl ... XTTEEE Ik goog
refers to the figure number. e . SRR ST SO ST S
Name v I Eo O, time IC  Fig. 20f e RSOOSR SOOI SO i
KO 1073 . 0.015 0.02 300 1 5 o) R F———— RN TR, A S—— S —————
K10 10° 1/3 0015 025 600 2 3 (S N U AN N SR SR
K36 103 1/6 0.025 1 900 2 35 ’ f :

LI 10°° 16 025 10 600 1 1,4,5 “or , : : : |
LIl 1073 1/6 0.5 20 1100 1 4,5 30 S e = ¢ I - 1
LI3 2104 13 01 2 50 1 2 W T U S P S

. . . . 10 o e - ' 1-- Ene‘rgy=0.27

such a way that the mean size of vortices grew with time. ; : ; ;
The long time behavior of almost inviscid of two- % 100 200 300 200 500 600
dimensional turbulent flow was investigated by Fine et al. time

[24], using an electron plasma column. They obtained a final FIG- 1. Temporal evolution of the energy) and the enstrophy
stationary state consisting in a few vortices forming a quasi{*), I =1/3. Initial values aré(0)=0.27 andO(0)=10.4.

crystal structurd25]. Most of the experimental studies in ) 2 ,
laboratory concern Euler turbulence, the long time evolution' N &réa of the square boxs=(2)", and length units are
then given in terms of the box site= 2. Time is measured

of decaying quasi-geostrophic turbulence is less known; ; X : ) e
Therefore, it is interesting to perform direct numerical simu-N (arbitrary dimensional units: this initial value problem
lations that can reproduce some phenomenological featurd@S not a preferredntrinsic) time characteristic scale. The
of the turbulence and relaxation in the quasigeostrophic cas¥!SCOUS time scale is for example,=1/v~ 10° for struc-
Two-dimensional Euler turbulence was intensively inves-{Ures of the box size, typical vortex turnover times ajge
tigated by numerical simulations. The early stages of decay= 1/\/0_0*.1- - ]
ing turbulence, and the formation of coherent structures, These integral quantitie& andO, depend on time due to
were studied by McWilliamet al. [26,27], and an interpre- the viscosity. We used two types of vorticity dlstrlputlon to
tation of the observed decaying laws, is given by Cameva@tart_the simulations. The first one has a few Fourler modes,
et al.[20], and Weiss and McWilliamE28]; other recent nu- @nd is called “ordered.” The second one, has a wide spec-
merical results may be found in Ref&9,30. For a study of ~ trum, and is _callgd “random.” In the second case the initial
the late stages, and for a description of the asymptotic statream function is
tionary states in terms of the thermodynamic theory, see, A A
e.g., Refs[31], [32], [33], and[21]. Watanabe, Iwayama, P(xy)=Re > a,,erm)tidnm
and Fujisakd5] recently performed simulations of the geo- nm= N2
strophic flow but they were only concerned with the initial \yhere the power spectrum decays|ag |2~k © for large
transitory regime of decaying turbulence and the dynamicg,gye numbek?=n2+m?, and the phaée$n are random,
of coherent structures. , uniformly distributed on the circle. The “ordered” initial
In fact, numerically one does not integrate Euler equaygongdition used wave numbers in rang® and (7). In this
t@ons but instead, some dissipgtive version of these €dUasaper, we do not focus on the energy power spectrum evo-
tions. The most natural choice is a Navier-Stokes approachytion and the correlated problem of the self-similarity break-
with a normal viscosity termA() (v is the kinematic Viscos-  ing in turbulent decay35,36. However, this initial spectrum
ity coefficien added to Eq(2), but often some hyperviscos- haq heen chosen in order to have initial conditions close to
ity is used(see the paper by Jimez[34], for a discussion hose of McWilliams[26] and also Matthaeust al. [31],

about the physical consequences of the hyperviscosity on thghich allows some comparisons with previous works on Eu-
properties of vortices ler flows.

We performed a series of moderate resolutioamber of In Fig. 1 we show the evolution & andO, and note that

. - 2_ . .
grid points N?=256), pseudospectral numerical INtegra- theijr decay is rather slow, in particular the energy varied only

. . . _ _3
tions of Egs.(1) and(2), with a viscous term=10"", in 5 fey percent, betweer= 300 and 600, while the state of the
most cases The code uses a predictor-corrector methOdsystem remained, as we will show, almost unchanged.

which exactly updates linear termisee Appendix A In The initial evolution of the system is similar to the Euler
Table | we summarize the parameters used in the simulgszse. The vorticity concentrates in large vortices through
tions. We varied the value of the intrinsic lendtrand for a  yarious generations of fusion processes. In Fig. 2 we show
givenl, we changed initial conditions to obtain different en- yhe gistribution of the vorticity at different times, in the case
ergiesEo=E(0), andenstrophie,=0(0), with 1=1/3 and with initial energyE(0)=0.1 (simulation

2 LI). The initial random field self-organize in localized struc-

E(t)=if dxdy| (V)2+ —|, O(t)= if dxdyQ?2. tures, the further evolutio'n of the system depends on the
2A) 4 2 2A) interactions of these vortices. In the Euler case, although

N/2
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fracg 8]
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Vorticity
Vorticity
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o

Vorticity
Vorticity

t=30 t=50

FIG. 2. Surface plots of the vorticity at timés-10, 20, 30, and 5@simulation LI3.

different configurations were observed, the flow tends to @&igs. 3 and 4 we show the late evolution of the flow for
steady state of thermodynamic equilibriyprovided that the  various simulation parameters.

system is mixing, as we discuss in Seg. ¥or this kind of We find that in spite of the very long simulation time, and
initial conditions, the typical state is characterized by a func{for the various random initial conditions we used, the system
tional relation of the formw~sinhys [31]. does not reach an equilibrium state. The quasistationary state

The quantity E/0)Y?=1¢ has dimensions of a length, observed is of another nature, in the sense that no further
and one can ask whether this “integral” length is related tomerging or new generation of vortices are observed. This
the long time structures emerging from the initial randomstate is characterized by the presence of localized vortices,
state. We performed simulations with different values of thiswhich slowly move and evolve around a field of small fluc-
ratio, L/1g~20, 40, but the evolution of the system is mainly tuations. We also see in the simulations that these coherent
influenced by the actual value of the total energy. Simulastructures are separated by strong vorticity gradients, which
tions K36, LI and LI1, have the same rafidO, and evolved may have a characteristic scale length of the same order as
to completely different states, with vortex sizes not directlythe interaction length. Here we define loosely a coherent
related tolz. However, a more systematic investigation of structure as an isolated, long-lived vortex; more sophisti-
the decay processes, and the influence of initial conditions, isated definitions abound in the literatl&7]. One property
necessary to answer this question, which is out of the scopef these distinct regions is that their average vorticity is dif-
of the present work. ferent from zerdthe value of the global mean vorticjtyThe

At variance with the Euler case with equivalent initial presence of such regions may be related to the dynamical
conditions, where a well defined equilibrium state set in, thesegregation, by like-sign vortex merging, of positive and
geostrophic system slowly evolves to a quasistationary stat@egative dominated structures. We shall see in Sec. IV that
characterized by the presence of a few localized vortices. Ithis state corresponds tolacal thermodynamical equilib-
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K10 K36

o
[

Vorticity
Vorticity

Vorticity
Vorticity

o
9 -

Vorticity
Vorticity

t=600

t=500
FIG. 3. Late stage of the evolution. Surface plots of the vorticity at titse800, 400, and 600simulations K10 and K36

rium. A phenomenological indication that this can be the In Fig. 5 we show the functional relation relating the vor-
case is illustrated by the fact that in the large vortex regionsticity to the stream function. We retrieve in the Euler case the

vorticity and stream function are related, and then they arevell known result that the flow tends to a state where
near to a stationary solution. w~sinhy. The simulations of the geostrophic flow show
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LI

Vorticity
N S o 2N W

Vorticity
[ =N SR A NN

Vorticity
S AV o RO

Vorticity

Vorticity
N - S

Vorticity

X
=600 =600
FIG. 4. Late stage of the evolution. Surface plots of the vorticity at titse800, 400, and 60Qsimulations LI and LIL
radically different behaviors. In the simulation K36 we found the coherent vortices and the low amplitude fluctuations. The
that the quasi-stationary state is characterized by the supett long time behavior is remarkable, the high amplitude

position oftwo functionsw(i). On the other hand, we clearly positive vortex does not has its negative counterpart, even if
see, in both simulations K36 and LI, the distinction betweerthe mean value of the stream function is zénd conserved
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FIG. 5. Functional relation between the vorticity and the stream function for various simul@ion&36, LI, and LIJ).

by the dynamick In fact, this asymmetry between positive ces. The large vortices appear to be close to equilibrium,
and negative vortices is observed in all simulations with fi-with a well-definedw() relation. As their interaction with
nite I. For instance, the four vortices of simulation K36 havethe background fluctuations is very weak, this regime lasts
different shapes and amplitudes. for long times, in our simulations to times comparable to the
Another important fact, as we can see in the LI1 simula-large scale viscous time. This behavior strongly differs from
tion, is that at very long timest&1100) a nicew(y) func-  the one prevailing in Euler flow, where the system globally
tion is established, as for the Euler flow, but witmegative  evolves to a thermodynamic state, in times much smaller
slope at the origirisee Fig. 5. This behavior agrees with the than the viscous on@inder similar initial and boundary con-
functional form one expects in a state of thermodynamiditions). These results justify the application of a thermody-
equilibrium, as we anticipated in the Introduction, E#2). namic approach to describe the formation and stability of
The evolution of the quasi-geostrophic flows observed irocalized vortices.
the simulations supports the idea of a very slow relaxation to The existence of a quasi-stationary state, where localized
a global thermodynamical equilibrium state. After the initial coherent structures dominate the flow, were also observed in
decaying turbulence regime, where the system is dominategelectrostatic plasma turbulenf&2]. The role of small scale
by the merging of vortices processes, a quasi-equilibriunfluctuations was enhanced in this case because of the pres-
state establishes. It is characterized by the coexistence ehce of propagating dispersive drift waves. A similar situa-
small amplitude fluctuations, and slowly moving large vorti- tion, with Rossby waves, can be found in geostrophic flows.
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Ill. THERMODYNAMIC FORMALISM AND MEAN FIELD Eqg. (16)]. In fact, at variance to the Onsager remark that in
VORTICITY EQUATION the case of Euler vortices, negative temperature states appear
in the infinite area(two-dimensional volumelimit, in the
geostrophiccase, this hypothesis might not be essential to
obtain negative temperature states. Indeed, we will see that
one of the consequences of the screening effect of the point
vortex interaction at large distances is that localized vorticity

\r,1vc(J)trek d'sbdgfelrs:]t:evéi;l?nﬁ'?fL:uggscn;gggf;heaf:g\r’v’ed;t 0Fquilibrium states, corresponding to negative temperature
yL, 1arg 9 y 9 states, exist, confirming this assumption.

point vortices, weakly interacting with the rest of the system; Therefore we postulate that the subsystem of point vorti-

the system Iiself consisting in a superposition of these SUbées can be described by a canonical distribution, instead of

fgsttirr?es.ngtr&rg]?\i?:r?é% %oanriﬁ:illjeem(;eerggltehliss thhyepcc);t:r?srﬁc%e microcanonical distribution, that is appropriate for an iso-
y ted system. The partition function is written

one, the weak interaction between subdomains leading to
fluctuations in their total energy. Another consequence is that N

the validity of the thermodynamical approach is limited to an ZIN,B)=D N| [T driexp—gH), (16)
intermediate time range: long enough to mix the initial vor- i=1

ticity, but short enough to neglect viscous effects arae . . .

Iarg)(/e fluctuations Iea?ding to s?rong interaction with other do_whereﬂ is the inverse tlemperature and can take arbitrary real
mains. These characteristics length and time are related %alues, ancH the Hamiftonian,

the size and lifetime of coherent structures, respectively. We

use a functional integral method to compute the partition H=Z LG (riur). (17)
function of a system of point vortices. Let the potential vor- 17

ticity be concentrated on delta functions

In this section we briefly review the derivation of the
vorticity equation for alocal thermodynamic equilibrium
state. Although formally the derivation follows the well
known procedurg¢13,15,18, in the present case the frame-

We consider the Hamiltonian as being the only relevant in-
N tegral of motion. It can easily be generalized to take into
amrn=> T, 8(r—r(1)). (13) account the angular momentum conservation_. In our case it
i=1 will not be necessary because localized solutions have well-
defined energy, but large fluctuations of angular momentum
We consider N, vortices with circulationsT';=I", (i (edge contributions

=1,...N.) andN_ vortices with circulationd™ ;=T _ (i The computation of the partition function is greatly sim-
=N, +1,...N), moving in a regionD (in general much plified using, instead of the nonlocal Hamiltonian, the local
smaller than the system are8. The corresponding stream action functional

function is

1N SN[Z]=%J drz(r)(Kz—A)z(r)—iJdrz(r)Q(r),
w(rD =5 2 TilKexlr=ri(0)), (14 (19)

and the identit
where k=1/I, and kK is the modified Bessel function of y

order zero; we neglect boundary terms, irrelevant in the ther-

modynamic limit. The Green function of the operaterA eXFi—BH)=f Dzexp{—S\[z]}, (19
+ k2 at the pointr, reduces to the simple unbounded domain

expressionG, = (27) “Ky(«|r—ro|). The position of vor-  where the dependence dhof the action is through vorticity

texi, r;, satisfies the equation of motion (13), z(r) is an auxiliary field introduced by transformation
_ . (19), andDz is the functional integral measure. A straight-
Fi=Vyl, ¥z, (15  forward computation allows us to relate the figddo the

stream function. Indeed, the extremum of actib8) is given

the overdot meaning time derivativéA rigorous derivation by
of the motion equations of point vortices, using the distribu-
tion formalism, may be found in Marchioro and Pulvirenti
[38].) These point vortices were first introduced by Stewart
[9], in his study of vortical atmospheric motion in the geo-
strophic approximation. then we can identify the most probable path with the

The interaction of two geostrophic vortices is similar to stream function, ¢y=—izy(r)/B. Obviously, using the
the Euler vortices for short distances; the Bessel functiorGaussian charactéin z) of integral(19), one can compute it
tends to K(r/I)— —logr for r<I, but at large distances a exactly by the Laplace method: replacing bagkin Sy[z],
screening effect appears; the interaction becomes exponeane finds again exp{sH).
tially weak Kq(r/1)— (7l /2r)Y2%exp(—r/l), for r>1. In addi- The advantage of representatitid) is that now we can
tion, we suppose the domain area finite to ensure the convemake the integration over the vortex positions Indeed,
gence of the integral that defines the partition funcfisee  from the expression of) [Eqg. (13)], we see that the term in

o
ESN[ZO]:O:(KZ_A)ZO(r):i,BQ(r): (20
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Q of the action, has the formidrzQ==T";z(r;). Therefore, overlap of the two solutions. For two exponentially localized
the terms depending on in the partition function can be Solutions this overlap is exponentially small. This means that
factorized (grouping of terms with the same labdl, and if some region of the flow approaches a solution of the ther-

their contribution is finally a factor of the form modynamic vorticity equation, the resulting structure would
not show significant variations before a long time. We show
N i) N in Sec. IV that what is observed in the simulations is consis-
D 1:[ f dre” = tent with this picture.
We are interested in the limit of largd. The energy of a IV. ASYMPTOTIC METHOD AND LOCALIZED
system of point vortices grows d$?> as demonstrated by VORTICITY SOLUTIONS

Pointin and Lundgrefl4], suggesting the scalirg—~Nz. To The question which naturally arises is whether the coher-

keep the circulation and the stream function finite, we mush sty ctures observed numerically correspond to local ther-
simultaneously change the temperature sgale BN, and  p\oqunamic states, solution of E¢4). Are the relations
the circulation scald’. — =I'/N; the total circulation be- 4 icity—stream function of Fig. 5 representative of solu-
comes thel’(n, —n_), with n.=N../N. Remember that ;s of the thermodynamic state equations? The comparison
B is normalized to the area of the system, so Bidtremains ot the yortices observed numerically and explicit solutions of

finite in the thermodynamic limit iN/D= const. Using these Eq. (24), with the relevant physical parameters, is the main
scalings the action transforms 8g[z]—NY z], and elimi- goal of the present section.

nating the irrelevant multiplicative constants, we obtain the

expression A. Thermodynamic equation
There is a deep difference in the mathematical structure of
Z(N,B)= f Dzexp{—Nz]}, (21 the Euler and geostrophic mean field equations. Although for
positive temperatureg@3>0), Ay=—w(1) is @ monotone in-
with creasing function, and the usual theorems of existence and

1 dr uniqueness of nonlinear elliptic equations apf89,4Q, for
_ 2 _ L negative temperatures the behavior of both systems differs.
Sz]= Zﬁf drz(r)(«"=2)z(1) ; nilogf De =0, In the Euler case, the equilibrium equation turns out to be
(22) completely integrable, and can be solved, by analogy with
the sine-Gordon equation, using the inverse scattering trans-
Note that theO(1/N) boundary terms, do not contribute to form [41]. In the geostrophic case the term#makesw(i)
the actionS in the largeN limit, and have been omitted in  nonmonotonic, as we discussed in the introduction, and then
Eqg.(22). The functional integral21) can be computed by the the free energy may have more than one minimum, so the
Laplace method in the limiN— to find the free energfl  existence and uniqueness of the solution are not guaranteed.
1 Arrich variety of solutions of the Euler flow appears when
—Bf(B,n.)=lim =logZ(N, ). (23)  additional constraints or more complicated boundary condi-
NN tions are considered. Complicated bifurcations of the set of
solutions of the thermodynamic equations are found for in-
The extremum of the action, corresponding to the most probstance in a bounded domain as shown by Chavanis and Som-
able state, gives the desired mean field equation to the vomeria [42], or in a subdomain of an unbounded field when
ticity distribution, the effects of circulation, impulse, and angular momentum
conservation are taken into accoyi48]. However, in these
I'n, o TBUN cases for a given set of parameters and boundary conditions,
_rsun) the solution of the thermodynamic equation is unique. At
f dre variance, in the geostrophic case, the fact thatdb® rela-
tion is nonmonotonic opens the possibility of having simul-
I'n_ T 8D taneous!y differ_ent soluti_ons. _ _ _
- ——e' A0, (24) In this section we introduce an iterative asymptotic
f drel A¥ method which allows us to find expligiparticulaj solutions
of Eq. (24). These solutions in the form of isolated vortices
this is equivalent to the equation found by Joyce and Mont&'€ therefore represeptative of local thgrmodynamipal equi-
gomery, with the extra term ir. Solutions of Eq(24) make I|br|u_m states, and WI|| be_ compared with the vortices ap-
the free energy23) extremal, then giving a thermodynami- P€aring in the numerical simulations. _
cally favorable state. Th(_e thermodyngmlc_state dete_rm_med by the solution of
Of particular interest are the localized solutions, if they&duation(24), rewritten in a form similar to Eqc10),
exist, because their superposition would evolve only slowly __ _ .2 Ty_ — BTy
in time. Indeed, ify; and ¢, are two solutions of Eq(24), Ap=—o()=YtaeV-ae Y, (29
then, introducingy= 1 + ¢ into EqQ. (2), we see that the depends on various parameters, in particglahe inverse of
time derivative of the total vorticity is of the order of the an energy, and" a circulation. The combinatiogl” appears

(k2= A)i(r)=
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9ty) [BT]

FIG. 6. Fit of w(¢) (from Fig. 5, LI) using function(25). (a) «_=59.063,«, =59.113, and8l'=—0.301(solid and dashed line(b)
Normalized vorticityg(), in units of gI', and its piecewise linear approximatian(y) (dashed ling in the adjacent intervals;(i
=1,2,3), around the tangent points (starg and separated by the matching poirits, and ¢,5 (circles.

as the inverse of a characteristic amplitude of the stream
function[the coefficient in the exponentials of E@5)]. For f dr(a e +a_e’)=pI? (29
a given initial condition, the system evolves in such a way
that a specifiav— relation establishes, as shown in Fig. 5

and then a specific value gfT. In fact, after a rescaling These two relation&28) and(29), can be interpreted as a set

transformation of Eq(25), using 18T as the unit of the of compatibility conditions relating the family of parameters

2
stream function, the number of parameters is reduced, meailEL ..} to the sefn. 5T}

ing that for a given solution of the scaled thermodynamic

equation, a whole family of states are obtained, that may be B. Vortex in a local thermodynamic state

compared to the numerical results. , The strong, isolated, positive vortex observed in the long
It is therefore convenient to rewrite E(R4) in terms of o1 eyolution of the LI simulationt& 600), is a good can-
the new scalednondimensional variable SI'y—y. This  gigate to represent a local equilibrium state. It has a well

change is equivalent to a change in the time units of theyefined vorticity—stream function relation, at least in the
original dynamical equationddamiltonian of point vortices

or Eulep. Indeed, the original equations are invariant under
the scaling transformatiopy— BI" ¢, t—t/(BI')], for arbi-
trary 8. We hence have

BB -

3

Ay=9(¥), 9 =r*y+a e'-a,e’, (26 25

whereg is the scaled vorticity, and... are now

f dre*?

We verify that in the new form3 andI” only appear through 0
the combinationBI'?, the number of parameters was then
reduced by one. The integral of the two last termg@f) is
proportional to the mean potential vorticity, and satisfies

-1

a.=prn. 27 !

f er:fdr(a+e*‘”—a,e‘/’):,BFZ(m—n,). '

(28) FIG. 7. Comparison of the vortex observed in the LI simulation
) ] ~att=600(cf. Fig. 4 and the vortex computed using the thermody-
Solutions of Eq(26) may depend on the independent nondi- namic equation. Solid lines: two orthogonal profiles of the observed
mensional parameterc,n. B} (or n_ instead ofn, vortex [labels(a) and (b)]. Dot-dashed line: piecewise approxima-
since they are related by_+n, =1). Moreover, from defi-  tion of the equilibrium vorticity(in the unscaled variablgsThick
nition (27) of @ we also have the integral relation solid line: exact thermodynamic equilibrium vorticity.
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=0 range(see Fig. 6, guaranteeing that it is in a relatively as, for instance, the mean potential vortic{B8). To take
stationary state. Its vorticity distribution is, in addition, al- into account these properties it will appear necessary, also, to
most axisymmetridcf. Fig. 7 below, facilitating analytic — appropriately approximate these function&ts. Appendix
calculation because it should be enough to assuifey) B). Because of this set of compatibility constraints, we fi-
=y(r), with r a polar radial coordinate, and origin placed atnally deal with a simplified but still nonlinear algebraic prob-
the vorticity maximum. We start then by fitting the scatteredlem.

points of thew(y) relation of Fig. 5(LI simulation). The fit, The boundary conditions are specified at the radtusf
a superposition of exponentials, corresponding to the functhe solution, implicitly defined by, (R)=¢;=0.004 and
tion w(y) of Eq. (25), is shown in Fig. 6. Y (0)=¢y=—0.542, the maximum value. The key point,

The observed relation is distorted in thes0 region determining the shape of the solution, is that the sign of the
by small amplitude vorticity structures surrounding theslope in the edge region differs from the one in the core.
main vortex. To minimize the effect of this noise, we essendindeed in each interval the solution of E@0) can be ex-
tially take points in the#=0 range. In addition, the dis- pressed as a superposition (@ero-order Bessel functions;
persion of the observed points in th&y) graph, even in the general solutions are
the “main vortex” region, is obviously due to the influence

of both nonstationary and viscous effects. This disper- (1) =Asdy(kar)+Cs, ¢elz, OSr<Ry, (31
sion introduces some error in the value of the parameters

of the fit, nevertheless, in practice it turns out that several PL(r)=Axdo( kol ) + B, Y o(kar) +Cy,

digits are necessary to keep the fitting curve within the

point cloud. We obtainw(#)=236y+59.063 exp—0.301) Yely, Rpa<r<Ri. (32
—59.113ex(0.301)), and after the rescalingl’¢— i with

pr=-0.301, we findg(y) with the parametersa_= PL(r)=A1Ko(k1r) +Bylo(kal) +Cy,

—17.778 anda, = —17.793, as shown in Fig.(8). It is

worth noting that the functional relation just obtained, which pely, Rp<r<R, (33

is a consequence of the thermodynamic approach, is consis- T .
tent with the observed vorticity—stream function relation. WNere{Ai Bi} andC; (with i=1,2,3) are constants fixed by

The fit g() is not enough to ensure that the actual vor-the shape ol ; «; are the square root of the absolute values
ticity distribution satisfies Eq(26); we must also verify if ©f the threeg, slopes;Ry;=1.066 andRy,=1.797 are the
the solutionobtained from this functional relation has physi- 'adial values where the linear solutiong (r)Nl; are
cally admissible parametersuch asn.), and the vortex maiched. The linear approximation of the radius Rg
shape agrees with the observed one. Indeed, consistence Bf-37> (for details on matching conditions cf. Appendix C;
the vorticity—stream function relation of a stationary coher-available onling44]). _ o
ent structure with the thermodynamic theory does not mean 1€ solutionA 4 (r) of Eq.(30) is drawn in Fig. 7 in the
that the structure is related to the equilibrium solution of theUnscaled variablesdashed ling It is found thaty, is a
thermodynamic equation: this last equation might not give gnonotene increasing function with a single minimua

solution comparable to the observed vortex even for a fixedh@ximum of —4, ) located at the origin, as observed in the
form g. numerical simulation. Monotony of the solution is not a

trivial result: nonphysical solutions with multiple maxima
1. Piecewise linear approximation can be found by modifying the slopes@f. The first term in
. . . L Eqg. (33 contains the modified Bessel function,,Kwhich
. Befqre computing an explicit SOIUF'O‘D O.f (24.)’ Itis en- .decays exponentially for large The behavior of the vortic-
Ilght'enlng and useful to sgarch a piecewise linear e}pproxh—ty tail will obviously depend on the actual values of the
mation 4, of the problem, i.e. a solution of the equation coefficientsA; andB;. However, in this intervaly is small
Ay =g, (4) (30) and the coefficient of the exponentially increasig@«hr)
LoInrLh Bessel function, must in fact be a rapidigcreasingunction
¢ of the disc sizeR, [if we relax the(pseudo}boundary con-
straint ¢ (0)= ¢, and fix the radiusR, ], which should en-
sure the exponential decay ¢f or .

where the functiory, is a piecewise linear approximation o
the scaled vorticity. Details about the construction ¢f (r)

can be found in Appendix B. We show in Fig(@ashed ling ) T .
Now, using the compatibility constraints we can compute

a g, made up ofM =3 line segments. The inddx empha- fracti ¢ e : - 2 and th
sizes that the quantity is evaluated using the piecewise Iineaﬁpe raction o pozsmve vorticen _.0'60 an t. e tempera-
ture parametepl’ <= — 651. Recalling that we fixed the free

vorticity. In a first step we solve the approximated version of
the thermodynamic equation, and then, we will use this soparamezterﬁl“z to be equal_}o—O.SOl, we can deducg
lution as an initial guess to numerically compute the smooth:(ﬂr)_/('gF )N__ 1“_1X 10 ,' We see below that.the exagt
vorticity satisfying Eq.(24). (nu_merlca) s:olutlo_n gives swmlar_values, qualitatively vali-
Let us note that within this approximation, the problem isdating the piecewise approximation.

reduced to a set of solvable linear equations and matching
conditions. However, a difficulty remains, related to the fact
that the coefficientsy. are functionals of the solutiogp. To get the exact solutions(r), we start fromy_ and
They are linked to some integral properties of the flow suctproceed by recurrencéhe convergence of the method is

2. Numerical exact solution of the thermodynamic equation
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ference, first the sensitivity of the nonlinear algebraic prob-

0 300
250l lem in the shape ofj, [see Egs(B2)—(B4)], and then the
R 200H e kind of parametric dependency which is exponential@br?
1 o R P s w150 and only linear fom.. .
bl S S T 100
2 : Z 50 i ;
Y O R . AAAAAAAAAA , AAAAAAAAA C. DlSCUSSlOn
5 10 15 % 5 10 15 20 . . .
n We first note that, as expected, the temperature is negative
ors ‘ ‘ ' 245 ‘ ' ‘ (positive temperature states are homogejoasd that, in

agreement with its physical definition, the positive vortex

e A densityn, is in the rangd 0,1]. From a mathematical point

235\ TR i

e : ; of view, the definition ofn, does not restrict its admissible
2af o R S S values to the interva0,1]. A priori, only a limited set of
225\ f N values of parametersx(_ ,« ) is compatible with this con-

" ? ? ? straint. In other words, there was a selection of the param-
¢ 5 W ™ ¥ eters @_,a,) by the dynamics, which resulted to be com-

patible with the hypothesis made to obtain the
thermodynamics equations. This is a striking confirmation of
the relevant character of the thermodynamical approach with
only two species of point vorticegvith circulation values

) ) ) ) =+TI'). Indeed, one could think that to reproduce the results of
proven in the online Appendix D44]). More precisely, we  he simulations, one would have to take an infinity number of
construct an analytic continuation of the computed stream, ey “species,” having different circulations. In fact, the
function ¢ , yi°: the initial guess isfo=y{° from which  hermodynamic equatiof24) deduced with a distribution of
the radius isRy=R . Analytic continuation is necessary t0 positive and negative vortices of equal circulation, turn out
get an asymptotic solution satisfying the boundary condiys pe sufficient to reproduce the observed state.

FIG. 8. Evolution of the parametes n,, I' andR as a func-
tion of the number of iterations showing a rapid convergence of
the scheme.

tions. IndeedR=R.,, the radius ofy is a function of the ~ Another hypothesis used in this construction was that, for
boundary conditions and might be greater than the initiakne gjven set of the parametefs_ ,a.}, the stream func-
radiusR,_ . tion should be strictly decreasirigith r), in order to match

The iterative procedure follows as: starting with thethe observed vortex. This is not necessarily the case for ar-
known value ofy,, [A¢]n. 1 is computed usingA 1,1 bitrary values of these parameters, and it may result in a
=9(¥n); thenyr,, ; is deduced by inversion of the laplacian yortex possessing, for instance, more than one maximum, or
(i.e.,A¢n1=[A¢],11). At each step three constraints must even, in the absence of solution at all. However, for the pa-
be satisfied(a) ,(0)=¢n, (b) ¥,(0) is a minimum, and  rameters found in the simulation, this property could be re-
(¢) Ayy(0)=—wy; the value obtained in the simulation is spected, and the shapes of the observed and computed vorti-
wy=—0.98 (see the Fig. § As can be shown, these con- ces, a posteriori agreed. This is an important point which
straints being true fon=0 by construction, remain true for also means that the long time evolution of the system is
any n. The radius of the solutioR=R(n) is by definition  consistent with the formation of localized thermodynamic
such that the vorticityn,(R)=0.15(~0.5 in unscaled units, states, in the form of coherent structures.
see Fig. 6. In Fig. 8, we show the evolution of the physical  In Fig. 7, we display two orthogonal cuts of the vortex
parameters, i.e£(n), n.(n), I'(n) andR(n), as a function  profile observed in the LI simulatiofihe solid lines labeled
of the number of iterations. We note that, owing to the (a) and(b)]. These cuts pass through the vorticity maximum,
chosen initial condition, convergence of the scheme is veryvhich should be the axis of symmetry of the vortex. We
fast and givegd=—1.05 103, n, =0.652,'=288, andR  indeed see, on the one hand, that the main vortex is almost
=2.25(for n—). axially symmetric and, on the other hand, that some other

As expected, the radius of the solutiarfr) is similar to  smaller vortex structures are present only in the boundary
the one we get by the piecewise linear approximation, agegion of the vortex. We also superposed on the same figure,
shown in Fig. 7. In fact, it turns out thatw(r) the calculated solutiongdashed line and thick solid line
~g(¢ (r)!BT)/BI': the method of inserting the solutiakh obtained using the thermodynamic theory. To solve this
obtained using, into g can be interpreted as an acceleratedequation we used an approximated method based in a piece-
convergence procedure equivalent to take the likhit> wise fit. We obtained a solution having a maximum signifi-
(also see Appendix D onlingt4]). We observea posteriori  cantly lower than the actual one, in part because the condi-
thatM = 3 has given qualitative accurate results in reproduction atr=0 was applied to the stream functiaf{0)= i,
ing the exact solution of the thermodynamic equation. Theand not directly to the vorticity. The numerical method con-
agreement between the the two methods is rather good faisted in an iterative process based on a step by step refine-
the fraction of positive vorticeg0.602 and 0.652 There is ment of the piecewise linear approximation. This method
however a significant difference between the values obtainetlirns out to be rapidly convergent and gives a vortex very
for the BI'2 parameter. Two reasons may explain such a dif-close to the observed one.
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It is worth noting that the value of the parameters definingplasma. We studied the phenomenology of this system by
the shape of the vortex, as for instanReand ), in the  direct numerical simulation, using a pseudospectral code. To
piecewise approximation, are strongly dependent. This imavoid the concentration of energy at small scales, which may
plies that the shape of the vortex is extremely sensitive tinduce numerical instabilities, a viscous term has been added
variations in their values. For example, if insteadRst2.4  in the simulation.
we usedR=2.2, the maximum of the vorticity would attain It has been shown that in this regime of decaying of an
a value around 5 instead of 3. Therefore, the error in thénitial random state, the Rossby lendthlay an essential role
computed profile is rather smalihe allowed range of con- in the relaxation process towards equilibrium states. Indeed,
sistent parameters is small at variance to the Euler dynamics which corresponds to the

The size of the region in local equilibrium must obviously special casel =+, no global quasistationary state is
be much larger than the interaction lengitfrhe solution we reached despite the very long simulation time, of hundreds of
obtained occupies a region of characteristic §tzeshich can ~ eddy turnover periodéand up to times of the same order as
be interpreted as the “box” lengthy we mentioned in Sec. I. the typical viscous time whenl is small compared with the
We verify that|<R~Ig=<L. In general, the simulations characteristic length of the box. We observed instead that for
show that the system evolves to a state with several welfiinite |, the system evolves towards spatialtgalizedqua-
differentiated regions in local equilibrium; in simulation K36 Sistationary states. The typical life times of these states is
four of such regions coexist, in simulation LI1 two well much larger than their turnover time, and may reach the or-
separated positive and negative vortices are present. Each @@r of the viscous time. A similar scaling of the flow com-
these regions have their own set of thermodynamic paranlexity with its size was also noted for the Hasegawa-Mima
eters. The processes of merging of like sign vortices, whicipystem[12].
have created these regions, appears to be faster than the timeThe observed long-lived vortices, which appear after a
to get a global equilibrium. The obtained value of the posi-first rapidly evolving stage dominated by vortex merging, are
tive circulation fractionn , larger than 1/21§, >n_), isa  Well separated coherent structures, generally surrounded by
reflect of this situation. Global equilibrium requires equality Small amplitude vorticity fluctuations. The coherent struc-
n,=n_. tures evolve inside regions of nonvanishing mean vorticity,

In this approach we neglected some effects which ca§éParated by strong gradients sometimes having a scale
modify the vorticity—stream function relation as for example!€ngth comparable to the interaction length. One important
the possible departures from the Boltzmann distribution andProperty of these coherent structures, is that they obey a
the viscosity. Indeed, we observed in the simulations that th¥orticity—stream function relatiofthis may be taken as the
vorticity tend to vary slower than exponentially at large am-definition of the coherent structurgd2]). Therefore, the
plitudes (see also the simulations presented by Matthaeuguestion about the nature of these states and their relation to
et al. [31], and Segre and Kidf21]). The thermodynamic SOme thermodynamic equilibrium state arises naturally.
theory based on a continuous distribution of vorticity, and N order to characterize these quasi-equilibrium states, we
taking into account the whole family of invariants, of Robert have developed a thermodynamical theory, using a point vor-
and Sommea [17], and Miller et al. [18], gives a Fermi €X approach._ The goe}l of thIS. theory is to obtain the most
distribution (which in the special 2-species case imp"esprobaple vorticity distribution, in the sense of the entropy.
Q~tanh(y)) rather than a Boltzmann distribution as given byThe dlfference with re_spept to the usual thegrles of thermo-
the present point vortex theotf2~sinh()). The Boltzmann ~ dynamic hydrodynamics, is that we apply this approach not
approximation is valid in the limitsT'y{<1 and in our case t© the whole system, but only to the regions staying in a
the maximum value ofgl'y{ is about 0.5. In other words, we guasi-stationary state. This approgch allows an eaS|er_just|f|—
are near the limit where the Boltzmann approximation iscation of the different approximations needed to obtain the
valid (dilute gas or dilute vorticity approximationBesides, ~Mean thermodynamic vorticity equation. One condition for
the damping effect due to the viscosity, which is stronger orfhe validity of the thermodynamical approach is that the sys-
the vorticity than on the stream function, may also explaintém of point vortices be “mixing”[38,45. In fact, as our
this flatness of the observed vorticity—stream function relag0al was to apply thermodynamics to a subsystem, that is in
tion. some localized region and for a limited period of time, the

In summary, the vortex obtained using the thermodynami@ssumption of mixing, and even of the existence of the ther-
equation is in agreement with the vortex observed in thénodynamic limitis less restrictive than in the general case of
simulation, which confirms that the flow evolves to statesthe global relaxation of Euler flows because of the presence

(coherent structurgslocally in thermodynamical equilib- ©f energy fluctuations. Moreover, our approach using point
rium. vortices, instead of continuous distribution of vorticity, is

coherent with the local equilibrium assumption: firstly, an
arbitrary distribution of vorticity can be fitted by a set of
point vortices at a given time; secondly, the error in the fit
In this paper we studied the motion of a rotating fluid does not grow in time, if the number of point vortices tends
layer in two-dimensional decaying turbulence, with charac+o infinity, this is precisely the thermodynamic limit.
teristic temporal variations much smaller than the rotation We used the canonical ensemble and worked with a local
frequency. The resulting quasi-geostrophic flow is mathfunctional action instead of the nonlocal point vortex Hamil-
ematically analogous to the ion drift motion in a magnetizedtonian. We obtained a mean field equation for the most prob-

V. CONCLUSIONS
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able vorticity distribution by minimizing the free energy which is a modified leapfrog approach, and in a corrector
functional. We showed that this equation possesses not onktep,

global equilibrium solutiongas in the Euler cagebut can

also describe localized structures, in agreement with our goal B 1 s —Lawz _

of describing local thermodynamic states. a(t+Ay=a(t)+ (e e )at)+a)

The thermodynamic equation is a nonintegrable and non-
linear integrodifferential equation. To solve this equation we
proceeded first with an approximated method using a piece-
wise linear fit of the vorticity—stream function relation; then
we used this method as the base of an iteration algorithm tghe algorithm is globally second order in time, and the non-
solve the equation numerically. The asymptotic method altinear term is computed twice per step. The exponentials in
lowed us to compute explicit solutions and to reproduce thehe predictor step ensure exact integration in absence of non-
main properties of the vorticity distribution. linearity. The corrector step is centered arouktd2. This

From the numerically exact solution we checked that, upaigorithm is a modified version of one of the Gazdag time-
to typical fluctuations around the boundary of the vortex,differencing schemegt6].
there is a very good correspondence between the thermody-
namic state, solution of the mean field equation, and the ,ppe\ i B: PIECEWISE LINEAR APPROXIMATION
observed vortex in the numerical simulatioftsaving the
same parameteysThe observed and computed vortices are In order to obtain explicit approximate solutions of the
similar, with comparable amplitudes and occupying regionssystem(26)—(29) describing the distribution of vorticity in
having the same size. The temperature of this state is negan equilibrium state, we develop an algorithm based on the
tive, and the proportion of positive circulation is greater thansubstitution of the transcendental functiey) by a piece-
the negative one. This last property emphasize the local chawise linear function. In this way the problem reduces to a set
acter of the state as its thermodynamic parameters are diffesf solvable linear problems, and matching conditions. How-
ent from the global onesthe mean vorticity is of course ever, a difficulty remains, related to the fact that coefficients
zerg. This clearly shows, and this is one of the main con-«_. are functionals of the solutiogr and are linked to some
clusions of the present work, that the coherent structuremtegral properties of the flow such as, for instance, the mean
naturally formed during the system’s long term evolution, arepotential vorticity(28). To take into account these properties
in factlocal thermodynamicaquilibrium states. It would be it will appear necessary, also, to appropriately model and
interesting to test these theoretical results by experiment, uspproximate these functionals. Because of this set of com-
ing for instance, a device similar to the one used by theatibility constraints, we will finally deal with a simplified
Driscoll group[24]. In order to obtain the effects related to but still nonlinear algebraic problem.
the potential vorticity, the particles in the device should have We first construct the functiog, (¢), a piecewise ap-

At _
+ 5 [N@(1) +N@)]. (A3)

a non-negligible Larmor radius. proximation ofg(¢) (see below Fig. 6, for an exampld=or
any set of intervalgl;}M ,, disjoints and covering they
ACKNOWLEDGMENTS axis, and any set of numbefg;}M ; with i, 1;, we define
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Sommieia for useful comments and discussions. This work -(¥)=9" (¥¥=d)+a(dh),  deli, 1=1,...M
has been supported by the Center National de la Recherche
Scientifique, and Universited’Aix—Marseille | & Il (UMR
6594).

(B1)

M is the number of intervals wherg is linear andy’ (¢;) is
the derivative ofg with respect toys at the pointy; . In that
way, we clearly satisfy thaj andg, are tangent at any point
APPENDIX A: NUMERICAL METHOD ; and, in the limitM tending to infinity and length{) tend-
ing to zero for everyi, g, approacheg. Of course in a
pecific case a finite value ™ is enough to obtain a satis-
ctory approximate solution of Eg24).
However, we immediately see that conditi(®@B8) cannot
satisfied by this form of without changing also the in-
tegral constraints. Indeed, once the parameserschosen,
and found the solution of Eq26) with g replaced byg, ,
a(t)=La(t)+N(a(t)), (A1)  one may compute the left and right hand sides of &8)
separately. Clearly, by construction they will appear in gen-
wherelL is the linear term andl(a) the nonlinear one. One eral to be different. In order to preserve the compatibility

time stepa(t+At) consists of a predictor ste=3a(t conditions(28) and (29), it is necessary t@imultaneously
+At), change botlg(¢) and the functional form of the parameters

O .
A=a(t—At)+(e**t—e Y a(t) + 2AtN(a(t)), The simplest self-consistent piecewise linear formulation
(A2) of the equilibrium vorticity equation is, in addition to ap-

The spatial discretization is made using fast Fourier trans
forms. Nonlinear terms are first computed in real space,
each time step, and after transformed back to Fourier spacé.
We use the 2/3 rule for antialiasing. Each Fourier mode o(b
the stream function, sag(t), satisfies an equation of the e
form
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proximation (B1), to linearize at the same time conditions have the same shape as the observed vortex. The comparison

(28) and(29). To this end, we write of the numerical simulations with the states of local thermo-
N | ) dynamic equilibrium, solution of Eq(24) consists in the

Ay=(A_+ AL+ )= +9(),  yeli, (B2 following steps. The first stef)) is to fit the observedv—q

relation (seen in numerical simulationsvith the function

(i) [as defined in(25)], this fixes the value of the param-

etersBl’ and a-., and after scaling of the stream function,

the functiong(#); the second stefii) consists in defining

where the new constantﬁi:aie”i satisfy by definition
g()=A_ —Al +«%y;  (obviously, g’'(i)=Al+A!,
+ k2). We also impose

M _ _ _ _ the piecewise linear functiog, (using the nondimensional
> | dr(AL=AL)+(AL+AL) (= )] form), in particular the interval$; and the pointsy;, which
=1 determineA. ; in the third step(iii) one solves the Helm-
=BI2(n_—n,), (B3) holtz_ equations in each _imag]e of I; (which are not known
a priori), and the matching and boundary conditions, to ob-
the mean vorticity condition, and tain the approximated stream functiaf(r); next, in the

fourth step(iv), using Eqs(B3) and(B4) one determines the
E i i i i P global parametera, and 8I'2. If the parameters are physi-
= J.dr[(A,+A+)+(A,—A+)(¢/l— $i)1=BI% cally acceptabldfor instancen. €[0,1], or 8<0), and the
' (B4) vortex shape compares well with the observed one, we may
conclude that the region analyzed is in a state of local ther-
the “temperature” condition. In Eq$B3) and(B4) the inte-  modynamic equilibrium.

M

gration domain is over the sefise J;} belonging to the fluid For fixedM (the number of linear pieces gf ) this algo-
space domaitd. The setqr e J;} are the image, im-space, rithm gives an approximate solution of the full nonlinear
of the intervalsl; in ¢ space. problem. The convergence of the algorithm, as the value of

The problem reduces then to solving EB2)—(B4) ina M increasedi.e., increasing the number of linear intervyals
given region of the flow, where a well defined relation be-is discussed in Appendix Donline) [44]. Here we use this
tween vorticity and current function is satisfied, comple-procedure to obtain a solution from tledservedvorticity—
mented with adequate boundary conditions. If this relatiorstream function relatiofrelation whichfixesthe value of the
actually represents a state close to a local thermodynamigarameterns Obviously, it also may be used to obtain solu-
equilibrium with a specific set of parameters, the solution oftions satisfying some boundary conditions independently of
Eqg. (24) having the same parameters, must exist and alsany observed vorticity distribution.
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