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Relaxation towards localized vorticity states in drift plasma and geostrophic flows
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The drift of ions in a magnetized plasma or the height fluctuations of a rotating fluid layer are described by
the conservation equation of a potential vorticity. This potential vorticity contains an intrinsic length scale, the
hybrid Larmor radius in plasma, and the Rossby length in the quasigeostrophic flow. The influence of this scale
in the evolution of a random initial vorticity field is investigated using a thermodynamic approach. In contrast
to the perfect fluid case, where the vorticity tends to a well defined stationary state, complete relaxation
towards an equilibrium state is not observed in numerical simulations of quasigeostrophic decaying turbulence.
The absence of global thermodynamic equilibrium is explained by the relaxation towards states oflocal
equilibrium where the vorticity is concentrated. The interaction between these separated regions is extremely
weak. Explicit, axisymmetric, localized solutions of the mean field integrodifferential equation of extremal
entropy states are obtained using asymptotic methods. A comparison of the computed solutions with the
observed coherent structures shows that they effectively correspond to states in local thermodynamic equilib-
rium.
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I. INTRODUCTION

A class of plasmas and fluid flows can be described
least approximately, by the conservation of a potential v
ticity. This is the case of the drift motion of ions in a ma
netized plasma, or of the flow of a rotating fluid layer som
times called quasigeostrophic flow. For such systems
potential vorticity satisfies a two-dimensional Euler equati
expressing the conservation of the potential vorticity alo
the streamlines. The relation between potential vorticityV
and stream functionc is given by

V52Dc1c/ l 2, ~1!

where l is some intrinsic length, andD is the two-
dimensional Laplacian. The evolution equation for the pot
tial vorticity is then

]V

]t
1@V,c#50, ~2!

wheret is the time, and@•,•# is the Poisson bracket.
In order to clearly state the physical nature of Eq.~2!, and

the origin of the intrinsic length, let us consider first, t
slow motion of ions in a homogeneous, magnetized plas
The uniform magnetic field is supposed to be along thz
direction,B5Bẑ, and all physical quantities depend on t
(x,y) coordinates. We assume the plasma quasi-neutral,
the electrons adiabatic. The density of ionsn can then be
related to the electrostatic potentialf by the Boltzmann law
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nd

n5n0eef/Te,

wheren0 stands for the equilibrium plasma density,Te for
the electron temperature~in energy units!, ande for the elec-
tron charge. Using this expression forn, the ion continuity
equation is given by

“"v52
D

Dt S ef

Te
D , ~3!

wherev is the ion velocity, andD/Dt is the total derivative
]/]t1v"“. The motion equation is

D

Dt
v52

e

mi
“f1vcv3 ẑ, ~4!

where we neglected the ion pressure with respect to the
entz force, the right hand side of Eq.~4! ~we consider a
plasma with the electron temperature much larger than
ion one!. In this equationmi is the ion mass, andvc
5eB/mi the cyclotron frequency.

Before proceeding, it is interesting to note that Eqs.~3!
and~4! are similar to the hydrodynamic equations describ
the motion of a rotating fluid layer of heightH5H01h (H0
is the mean width of the layer!, in which the pressure is
proportional to the variations of the layer widthh(x,y,t). We
assume, as in the shallow water approximation, that the fl
layer is thin with respect to the characteristic scales of
horizontal motion. We may identify the height variationsh
with the electrostatic potential, and the magnetic force w
the Coriolis force~we neglect variations of the rotation fre
quency, the so-called ‘‘beta’’ effect in geostrophic flows!. In
such a case we would have

]H

]t
1“"~Hv !50, ~5!
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or, equivalently,

“"v52
D

Dt
logS 11

h

H0
D , ~6!

and

D

Dt
v52g“h1 f v3 ẑ, ~7!

where g is the acceleration due to gravity, andf /2 is the
rotation frequency. These equations, which describe
quasigeostrophic flow, are formally equivalent to the plas
equations~3! and ~4!.

In the plasma case we can form a characteristic len
from the so-called hybrid sound speedcs

25Te /mi appearing
in the electrostatic force term, and the cyclotron frequen
to obtain the hybrid Larmor radiusl L5cs /vc . In the fluid
case, the characteristic speed isc25gH0, and the character
istic length isl R5c/ f , the Rossby length (f is in this case
the characteristic frequency!. The plasma and fluid system
are thus equivalent provided we identifyef/Te and h/H0
and take length and time units (l L,1/vc) or (l R,1/f ) respec-
tively.

As our objective is to obtain an equation for the vortic
v5(“3v)"ẑ ~only the z component of the vorticity is no
zero, in these two-dimensional systems!, we compute the
rotational of Eq.~4!:

“"v52
1

v1vc

D

Dt
v. ~8!

Since we are interested in the slow motion of ions~or the
slow variations of the layer width!, we assume that the tem
poral variations of the electrostatic fluctuations is mu
smaller than the cyclotron frequencyu]/]tu!vc , which
means that in the first approximation the vorticity is given
the drift velocity

v'2“3~“f3 ẑ/B!"ẑ,

and then,

v5vcl L
2D~ef/Te!!vc .

In the case of the geostrophic flows, the equivalent appr
mation is that of a small Rossby numberv/v f . Therefore,
we can neglectv with respect tovc in ~8!, and combine it
with ~3!, to finally obtain the conservation equation,

D

Dt
~Df2f/ l L

2!50, ~9!

which can easily be transformed to the generalized E
equation~2!, by identifying the electrostatic potential wit
the stream functionc52vcl L

2ef/Te , or c52 f c2h/H0 in
the fluid case, and with the vorticity given byv52Dc in
both cases.

Interest in this type of equations started with the study
atmospheric motion in the geostrophic approximation, a
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later in plasmas@1#, and Jupiter’s red spot@2#. A systematic
comparison of both flows was made by Hasegawa, Mac
nan and Kodama@3#; more recently Pe´sceli and Trulsen@4#
investigated some of their statistical properties, and W
tanabe, Iwayama and Fujisaka@5# performed numerical
simulations of the evolution of an initially random state. T
more general case of the shallow water system, a compr
ible fluid layer in a rotating frame, was studied by Chava
and Sommeria@6#. Hopfinger and van Heijst@7# surveyed
several topics on vortices in rotating fluids. A review on t
analogy between drift plasma and geophysical flows, incl
ing several generalizations, in particular on nonlinear effe
can be found in Ref.@8#.

One important feature of these systems is that a supe
sition of point vortices, sometimes called screened vorti
or Stewart vortices, are exact solutions of~2!, in much the
same way as for the Euler case@9,10#. At variance to the
usual Euler log(r) interaction (r is the distance between tw
point vortices!, geostrophic point vortices of~2! interact with
K0(r / l ) law, where K0 is the modified Bessel function.~Al-
though ‘‘Euler’’ and ‘‘geostrophic’’ are not fully appropriated
denominations, we use them for simplicity.! We remark that
for an Euler flow there is no characteristic length, other th
those related to initial conditions. The changer→ar , with a
an arbitrary constant, lets invariant the equation of motion
point vortices, and also Euler equation, after an appropria
change in the time units. On the other hand, the interactio
point vortices in the geostrophic flow involves the charact
istic lengthl, and obviously the motion of vortices explicitl
depends on this scale. Systems of Euler and geostro
point vortices might then behave differently, as usually ha
pens between long and short range interacting particle
tems.

Statistical mechanics of turbulence

The possibility of approximating the vorticity flow by
superposition of point vortices, led to the idea that tw
dimensional turbulence can be described using the usual
tistical methods for Hamiltonian systems. In 1949, Onsa
@11# settled the bases of a thermodynamic approach to
drodynamics. He demonstrated in particular that the ph
space of a system of point vortices has finite volume a
consequently states of negative temperature are therm
namically accessible. Negative temperature states are ch
terized by the formation of clusters of like circulation vort
ces. In the Euler case, as the interaction range is infinite,
process continues up to the formation of vortices whose
is comparable to the size of the system, and a global e
librium state is predicted. An analogous thermodynami
approach is valid for the quasigeostrophic flow, withV re-
placed byv, and, therefore, this global state should also
reached in this case~this is the generally accepted viewpoin
see Ref.@6#!. However, and this is the subject of the prese
paper, due to the short range interaction of geostrophic
tices, localized distribution of vorticity may develop~as is
the case for the Hasegawa-Mima system@12#!. In such a case
distant vortices will interact weakly, leading to a very slo
relaxation towards equilibrium, slower than any releva
8-2
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RELAXATION TOWARDS LOCALIZED VORTICITY . . . PHYSICAL REVIEW E69, 056318 ~2004!
time, as for instance, viscous time, and the appropr
asymptotic state of the system will be not longer a global
a local thermodynamic state.

The theory of Onsager was extensively studied, first
systematically derive the relevant thermodynamic quanti
as the free energy, using microcanonical or canonical
proaches to the point vortex systems@13–16#, and later to
incorporate into the statistical formalism the continuous d
tribution of vorticity and the infinite number of invariant
other than energy and enstrophy@17,18#.

One important result of these works is that the most pr
able state~which is an extremum of the free energy! is given
by a Debye like equation for an electrolyte, relating the v
ticity to the current function:

V5a1e2bGc2a2ebGc, ~10!

whereb is a parameter, like a Lagrange multiplier, equiv
lent to the inverse of a temperature~note, however, thatb has
the dimensions of an areaA over an energy!; a6 are two
constants which take into account that the integral of
~10! over the entire fluid domainA, should vanish. A very
simple explanation of this formula is given by the analogy
the vortex system, which satisfy the Poisson equation

2Dc5V2c/ l 25v~c!, ~11!

and a dilute electrolyte. The vorticityv is equivalent to the
charge density, and the stream function to the mean fi
electrostatic potential. The equilibrium distribution of vor
ces~charges, in this analogy!, is the Boltzmann distribution
proportional to exp~bGc!, giving directly an equation of the
type of Eq. ~10!. In fact the analogy of the vortex syste
with a system of Coulomb interacting particles is rather m
leading: the ‘‘temperature’’ of vortices can take both sig
@11#, and the negative temperature states are the most
evant in hydrodynamics. Another analogy which was som
times exploited in the literature is to compare the~point!
vortex systems with a stellar system, interacting with
gravitational potential~see, e.g., Ref.@19#!. However, in ad-
dition that for stars only attractive interactions are allowe
the Hamiltonian possesses both kinetic and potential e
gies, and then the phase space is not bounded as it is in
case of a vortex system.

The integrodifferential equation~10! establishes a func
tional relationV5V~c!. Clearly, its solution is also a station
ary exact solution of Eq.~2! because the Poisson brack
vanishes identically. If the usual hypothesis on the validity
statistical thermodynamics are satisfied, the system evo
from an arbitrary initial state to a stationary state with p
cisely this distribution of vorticity. However, one importa
difference might exist in the nature of the equilibrium stat
between rotation dominated flows and Euler flows. This d
ference would be related to the intrinsic length, which add
term c/ l 2 to the potential vorticity. Indeed, suppose th
a25a15a/2 ~this is not essential to the present argumen!,
and thenv5v~c! in Eq. ~11! is given by

v~c!52c/ l 22a sinh~bGc!. ~12!
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We note that due to the first term in the right hand side,v~c!
can change its sign near the origin~c small enough! for
negative temperature,b,0. This can be shown by a simpl
analogy with the one-dimensional motion of a particle in
potentialV, (D5d2/dx2 becomes the acceleration of the pa
ticle, if we interpret the coordinatex as the time!

d2c/dx25v52dV~c!/dc,

V52c2/2l 22a cosh~bGc!/bG.

This equation allows us to see that two cases arise: w
b.0 only the solutionc50 exists; and, whenb,0 two other
solutions appear. This change in sign, implies then the e
tence of two local minima, separated by a separatrix. T
motion on the separatrix is localized in space, it approac
zero exponentially fast in both directions, the ‘‘period’’ of th
motion becomes infinite.

Therefore, the presence of an intrinsic length opens
possibility of localized distributions of vorticityat local
equilibrium, weakly interacting with other structures. The e
sential ingredient is the short range interaction associa
with this length. The existence of such regions may also
related to the fact that the area of vortices generally dim
ishes after fusion@20#, the distance between vortices ten
then to increase. Let us assume that the size of the syste
L much greater than the interaction length, and introduce
intermediate scalel B such that the system can be divided in
many boxes of sizel B , l ! l B&L. ~Note that this hierarchy of
scales cannot in general be introduced in Euler flows;
discuss this point later in Sec. V.! If the boxes are large
enough and interactions between two boxes are neglig
~confined to a layer of sizel ), it is natural to think that they
should evolve to different and independent thermodyna
states, relaxation to an equilibrium~statistical stationary
state! being faster than mixing of distant boxes.

In Sec. II we investigate the phenomenology of this s
tem to test the scenario of slow relaxation. A brief account
the thermodynamical formalism is given in Sec. III, followe
by Sec. IV, where we compute explicit solutions of the th
modynamic equation. A comparison is also made betw
the ~almost! stationary vortices found in the numerical sim
lations and the solutions of the thermodynamic equatio
Our main conclusion, presented in Sec. V, is that in contr
to the decaying two-dimensional Navier-Stokes ‘‘turb
lence,’’ for which the system attains a well defined therm
dynamic state~see however, the discussions in Refs.@21#,
and @22#!, the geostrophic decaying turbulence evolves
wards a peculiar turbulent state, characterized by a supe
sition of coherent vortices in local thermodynamic equili
rium.

II. NUMERICAL SIMULATIONS OF DECAYING
TURBULENCE AND RELAXATION

The pioneering experiments of Couder@23# showed that
two-dimensional turbulence is dominated by the interact
of coherent vortices. In these experiments, turbulence
generated on a thin soap film flowing through a grid. T
system freely evolved by successive merging of vortices
8-3
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such a way that the mean size of vortices grew with tim
The long time behavior of almost inviscid of two
dimensional turbulent flow was investigated by Fine et
@24#, using an electron plasma column. They obtained a fi
stationary state consisting in a few vortices forming a qua
crystal structure@25#. Most of the experimental studies i
laboratory concern Euler turbulence, the long time evolut
of decaying quasi-geostrophic turbulence is less kno
Therefore, it is interesting to perform direct numerical sim
lations that can reproduce some phenomenological feat
of the turbulence and relaxation in the quasigeostrophic c

Two-dimensional Euler turbulence was intensively inve
tigated by numerical simulations. The early stages of dec
ing turbulence, and the formation of coherent structur
were studied by McWilliamset al. @26,27#, and an interpre-
tation of the observed decaying laws, is given by Carnev
et al. @20#, and Weiss and McWilliams@28#; other recent nu-
merical results may be found in Refs.@29,30#. For a study of
the late stages, and for a description of the asymptotic
tionary states in terms of the thermodynamic theory, s
e.g., Refs.@31#, @32#, @33#, and @21#. Watanabe, Iwayama
and Fujisaka@5# recently performed simulations of the ge
strophic flow but they were only concerned with the init
transitory regime of decaying turbulence and the dynam
of coherent structures.

In fact, numerically one does not integrate Euler eq
tions but instead, some dissipative version of these eq
tions. The most natural choice is a Navier-Stokes appro
with a normal viscosity termnDV ~n is the kinematic viscos-
ity coefficient! added to Eq.~2!, but often some hyperviscos
ity is used~see the paper by Jime´nez @34#, for a discussion
about the physical consequences of the hyperviscosity on
properties of vortices!.

We performed a series of moderate resolution~number of
grid points N252562), pseudospectral numerical integr
tions of Eqs.~1! and ~2!, with a viscous term (n51023, in
most cases!. The code uses a predictor-corrector meth
which exactly updates linear terms~see Appendix A!. In
Table I we summarize the parameters used in the sim
tions. We varied the value of the intrinsic lengthl, and for a
given l, we changed initial conditions to obtain different e
ergiesE05E(0), andenstrophiesO05O(0),

E~ t !5
1

2AE
A

dxdyF ~¹c!21
c2

l 2 G , O~ t !5
1

2AE
A

dxdyV2.

TABLE I. Simulation parameters. IC stand for the type of initi
conditions. Type 1 is a random distribution of vorticity. Type
consists of a superposition of a few Fourier modes. The last colu
refers to the figure number.

Name n l E0 O0 time IC Fig.

K0 1023 ` 0.015 0.02 300 1 5
K10 1023 1/3 0.015 0.25 600 2 3
K36 1023 1/6 0.025 1 900 2 3, 5
LI 1023 1/6 0.25 10 600 1 1, 4, 5
LI1 1023 1/6 0.5 20 1100 1 4, 5
LI3 2 1024 1/3 0.1 2 50 1 2
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The area of the square box isA5(2p)2, and length units are
then given in terms of the box sizeL52p. Time is measured
in ~arbitrary! dimensional units: this initial value problem
has not a preferred~intrinsic! time characteristic scale. Th
viscous time scale is for example,tn51/n'103 for struc-
tures of the box size, typical vortex turnover times aretv

51/AO0'1.
These integral quantities,E andO, depend on time due to

the viscosity. We used two types of vorticity distribution
start the simulations. The first one has a few Fourier mod
and is called ‘‘ordered.’’ The second one, has a wide sp
trum, and is called ‘‘random.’’ In the second case the init
stream function is

c~x,y!5Re (
n,m52N/2

N/2

an,mei (nx1my)1 ifn,m,

where the power spectrum decays asuan,mu2;k26 for large
wave numberk25n21m2, and the phasesfn,m are random,
uniformly distributed on the circle. The ‘‘ordered’’ initia
condition used wave numbers in range~1! and ~7!. In this
paper, we do not focus on the energy power spectrum e
lution and the correlated problem of the self-similarity brea
ing in turbulent decay@35,36#. However, this initial spectrum
has been chosen in order to have initial conditions close
those of McWilliams@26# and also Matthaeuset al. @31#,
which allows some comparisons with previous works on E
ler flows.

In Fig. 1 we show the evolution ofE andO, and note that
their decay is rather slow, in particular the energy varied o
a few percent, betweent5300 and 600, while the state of th
system remained, as we will show, almost unchanged.

The initial evolution of the system is similar to the Eul
case. The vorticity concentrates in large vortices throu
various generations of fusion processes. In Fig. 2 we sh
the distribution of the vorticity at different times, in the ca
with l 51/3 and with initial energyE(0)50.1 ~simulation
LI !. The initial random field self-organize in localized stru
tures, the further evolution of the system depends on
interactions of these vortices. In the Euler case, altho

n

FIG. 1. Temporal evolution of the energy~1! and the enstrophy
~3!, l 51/3. Initial values areE(0)50.27 andO(0)510.4.
8-4
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FIG. 2. Surface plots of the vorticity at timest510, 20, 30, and 50~simulation LI3!.
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different configurations were observed, the flow tends t
steady state of thermodynamic equilibrium~provided that the
system is mixing, as we discuss in Sec. V!. For this kind of
initial conditions, the typical state is characterized by a fu
tional relation of the formv;sinhc @31#.

The quantity (E/O)1/25 l E has dimensions of a length
and one can ask whether this ‘‘integral’’ length is related
the long time structures emerging from the initial rando
state. We performed simulations with different values of t
ratio,L/ l E'20, 40, but the evolution of the system is main
influenced by the actual value of the total energy. Simu
tions K36, LI and LI1, have the same ratioE/O, and evolved
to completely different states, with vortex sizes not direc
related tol E . However, a more systematic investigation
the decay processes, and the influence of initial condition
necessary to answer this question, which is out of the sc
of the present work.

At variance with the Euler case with equivalent initi
conditions, where a well defined equilibrium state set in,
geostrophic system slowly evolves to a quasistationary s
characterized by the presence of a few localized vortices
05631
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Figs. 3 and 4 we show the late evolution of the flow f
various simulation parameters.

We find that in spite of the very long simulation time, an
for the various random initial conditions we used, the syst
does not reach an equilibrium state. The quasistationary s
observed is of another nature, in the sense that no fur
merging or new generation of vortices are observed. T
state is characterized by the presence of localized vorti
which slowly move and evolve around a field of small flu
tuations. We also see in the simulations that these cohe
structures are separated by strong vorticity gradients, wh
may have a characteristic scale length of the same orde
the interaction lengthl. Here we define loosely a cohere
structure as an isolated, long-lived vortex; more sophi
cated definitions abound in the literature@37#. One property
of these distinct regions is that their average vorticity is d
ferent from zero~the value of the global mean vorticity!. The
presence of such regions may be related to the dynam
segregation, by like-sign vortex merging, of positive a
negative dominated structures. We shall see in Sec. IV
this state corresponds to alocal thermodynamical equilib-
8-5
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FIG. 3. Late stage of the evolution. Surface plots of the vorticity at timest5200, 400, and 600~simulations K10 and K36!.
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rium. A phenomenological indication that this can be t
case is illustrated by the fact that in the large vortex regio
vorticity and stream function are related, and then they
near to a stationary solution.
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In Fig. 5 we show the functional relation relating the vo
ticity to the stream function. We retrieve in the Euler case
well known result that the flow tends to a state whe
v;sinhc. The simulations of the geostrophic flow sho
8-6
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FIG. 4. Late stage of the evolution. Surface plots of the vorticity at timest5200, 400, and 600~simulations LI and LI1!.
d
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radically different behaviors. In the simulation K36 we foun
that the quasi-stationary state is characterized by the su
position oftwo functionsv~c!. On the other hand, we clearl
see, in both simulations K36 and LI, the distinction betwe
05631
er-

n

the coherent vortices and the low amplitude fluctuations. T
LI long time behavior is remarkable, the high amplitud
positive vortex does not has its negative counterpart, eve
the mean value of the stream function is zero~and conserved
8-7
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FIG. 5. Functional relation between the vorticity and the stream function for various simulations~K0, K36, LI, and LI1!.
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by the dynamics!. In fact, this asymmetry between positiv
and negative vortices is observed in all simulations with
nite l. For instance, the four vortices of simulation K36 ha
different shapes and amplitudes.

Another important fact, as we can see in the LI1 simu
tion, is that at very long times (t51100) a nicev~c! func-
tion is established, as for the Euler flow, but with anegative
slope at the origin~see Fig. 5!. This behavior agrees with th
functional form one expects in a state of thermodynam
equilibrium, as we anticipated in the Introduction, Eq.~12!.

The evolution of the quasi-geostrophic flows observed
the simulations supports the idea of a very slow relaxation
a global thermodynamical equilibrium state. After the init
decaying turbulence regime, where the system is domin
by the merging of vortices processes, a quasi-equilibri
state establishes. It is characterized by the coexistenc
small amplitude fluctuations, and slowly moving large vor
05631
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ces. The large vortices appear to be close to equilibriu
with a well-definedv~c! relation. As their interaction with
the background fluctuations is very weak, this regime la
for long times, in our simulations to times comparable to t
large scale viscous time. This behavior strongly differs fro
the one prevailing in Euler flow, where the system globa
evolves to a thermodynamic state, in times much sma
than the viscous one~under similar initial and boundary con
ditions!. These results justify the application of a thermod
namic approach to describe the formation and stability
localized vortices.

The existence of a quasi-stationary state, where locali
coherent structures dominate the flow, were also observe
electrostatic plasma turbulence@12#. The role of small scale
fluctuations was enhanced in this case because of the p
ence of propagating dispersive drift waves. A similar situ
tion, with Rossby waves, can be found in geostrophic flow
8-8
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III. THERMODYNAMIC FORMALISM AND MEAN FIELD
VORTICITY EQUATION

In this section we briefly review the derivation of th
vorticity equation for alocal thermodynamic equilibrium
state. Although formally the derivation follows the we
known procedure@13,15,18#, in the present case the fram
work is different: we consider asubdomainof the flow, de-
noted byD, large enough to be described by a large se
point vortices, weakly interacting with the rest of the syste
the system itself consisting in a superposition of these s
systems. An immediate consequence of this hypothesi
that the natural thermodynamical ensemble is the canon
one, the weak interaction between subdomains leading
fluctuations in their total energy. Another consequence is
the validity of the thermodynamical approach is limited to
intermediate time range: long enough to mix the initial vo
ticity, but short enough to neglect viscous effects and~rare!
large fluctuations leading to strong interaction with other d
mains. These characteristics length and time are relate
the size and lifetime of coherent structures, respectively.
use a functional integral method to compute the partit
function of a system of point vortices. Let the potential vo
ticity be concentrated on delta functions

V~r,t !5(
i 51

N

G id„r2r i~ t !…. ~13!

We consider N1 vortices with circulations G i5G1 ( i
51, . . . ,N1) and N2 vortices with circulationsG i5G2 ( i
5N111, . . . ,N), moving in a regionD ~in general much
smaller than the system areaA!. The corresponding stream
function is

c~r,t !5
1

2p (
i 51

N

G i„K0kur2r i~ t !u…, ~14!

where k51/l , and K0 is the modified Bessel function o
order zero; we neglect boundary terms, irrelevant in the th
modynamic limit. The Green function of the operator2D
1k2 at the pointr0 reduces to the simple unbounded doma
expression:Gk5(2p)21K0(kur2r0u). The position of vor-
tex i, r i , satisfies the equation of motion

ṙ i5“curi
3 ẑ, ~15!

the overdot meaning time derivative.~A rigorous derivation
of the motion equations of point vortices, using the distrib
tion formalism, may be found in Marchioro and Pulviren
@38#.! These point vortices were first introduced by Stew
@9#, in his study of vortical atmospheric motion in the ge
strophic approximation.

The interaction of two geostrophic vortices is similar
the Euler vortices for short distances; the Bessel func
tends to K0(r / l )→2 log r for r ! l , but at large distances
screening effect appears; the interaction becomes expo
tially weak K0(r / l )→(p l /2r )1/2exp(2r/l), for r @ l . In addi-
tion, we suppose the domain area finite to ensure the con
gence of the integral that defines the partition function@see
05631
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Eq. ~16!#. In fact, at variance to the Onsager remark that
the case of Euler vortices, negative temperature states ap
in the infinite area~two-dimensional volume! limit, in the
geostrophiccase, this hypothesis might not be essential
obtain negative temperature states. Indeed, we will see
one of the consequences of the screening effect of the p
vortex interaction at large distances is that localized vortic
equilibrium states, corresponding to negative tempera
states, exist, confirming this assumption.

Therefore we postulate that the subsystem of point vo
ces can be described by a canonical distribution, instea
the microcanonical distribution, that is appropriate for an is
lated system. The partition function is written

Z~N,b!5D 2NE )
i 51

N

dr iexp~2bH !, ~16!

whereb is the inverse temperature and can take arbitrary
values, andH the Hamiltonian,

H5(
iÞ j

G iG jGk~r i ,r j !. ~17!

We consider the Hamiltonian as being the only relevant
tegral of motion. It can easily be generalized to take in
account the angular momentum conservation. In our cas
will not be necessary because localized solutions have w
defined energy, but large fluctuations of angular moment
~edge contributions!.

The computation of the partition function is greatly sim
plified using, instead of the nonlocal Hamiltonian, the loc
action functional

SN@z#5
1

2bE drz~r!~k22D!z~r!2 i E drz~r!V~r!,

~18!

and the identity

exp~2bH !5E Dz exp$2SN@z#%, ~19!

where the dependence onN of the action is through vorticity
~13!, z(r) is an auxiliary field introduced by transformatio
~19!, andDz is the functional integral measure. A straigh
forward computation allows us to relate the fieldz to the
stream function. Indeed, the extremum of action~18! is given
by

d

dz
SN@z0#50⇒~k22D!z0~r!5 ibV~r!, ~20!

then we can identify the most probable pathz0 with the
stream function, c52 iz0(r)/b. Obviously, using the
Gaussian character~in z) of integral~19!, one can compute it
exactly by the Laplace method: replacing backz0 in SN@z#,
one finds again exp(2bH).

The advantage of representation~19! is that now we can
make the integration over the vortex positionsr i . Indeed,
from the expression ofV @Eq. ~13!#, we see that the term in
8-9
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V of the action, has the form*drzV5( iG iz(r i). Therefore,
the terms depending onr i in the partition function can be
factorized ~grouping of terms with the same labeli ), and
their contribution is finally a factor of the form

D 2N)
6

F E dreiG6z(r)GN6

.

We are interested in the limit of largeN. The energy of a
system of point vortices grows asN2 as demonstrated b
Pointin and Lundgren@14#, suggesting the scalingz→Nz. To
keep the circulation and the stream function finite, we m
simultaneously change the temperature scaleb→bN, and
the circulation scaleG6→6G/N; the total circulation be-
comes thenG(n12n2), with n65N6 /N. Remember that
b is normalized to the area of the system, so thatbN remains
finite in the thermodynamic limit ifN/D5const. Using these
scalings the action transforms asSN@z#→NS@z#, and elimi-
nating the irrelevant multiplicative constants, we obtain
expression

Z~N,b!5E Dz exp$2NS@z#%, ~21!

with

S@z#5
1

2bE drz~r!~k22D!z~r!2(
6

n6logE dr

D eG6z(r).

~22!

Note that theO(1/N) boundary terms, do not contribute t
the actionS in the largeN limit, and have been omitted in
Eq. ~22!. The functional integral~21! can be computed by th
Laplace method in the limitN→` to find the free energyf:

2b f ~b,n6!5 lim
N→`

1

N
logZ~N,b!. ~23!

The extremum of the action, corresponding to the most pr
able state, gives the desired mean field equation to the
ticity distribution,

~k22D!c~r!5
Gn1

E dre2Gbc(r)

e2Gbc(r)

2
Gn2

E dreGbc(r)

eGbc(r). ~24!

this is equivalent to the equation found by Joyce and Mo
gomery, with the extra term ink. Solutions of Eq.~24! make
the free energy~23! extremal, then giving a thermodynam
cally favorable state.

Of particular interest are the localized solutions, if th
exist, because their superposition would evolve only slow
in time. Indeed, ifc1 andc2 are two solutions of Eq.~24!,
then, introducingc5c11c2 into Eq. ~2!, we see that the
time derivative of the total vorticity is of the order of th
05631
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overlap of the two solutions. For two exponentially localiz
solutions this overlap is exponentially small. This means t
if some region of the flow approaches a solution of the th
modynamic vorticity equation, the resulting structure wou
not show significant variations before a long time. We sh
in Sec. IV that what is observed in the simulations is cons
tent with this picture.

IV. ASYMPTOTIC METHOD AND LOCALIZED
VORTICITY SOLUTIONS

The question which naturally arises is whether the coh
ent structures observed numerically correspond to local t
modynamic states, solution of Eq.~24!. Are the relations
vorticity–stream function of Fig. 5 representative of sol
tions of the thermodynamic state equations? The compar
of the vortices observed numerically and explicit solutions
Eq. ~24!, with the relevant physical parameters, is the m
goal of the present section.

A. Thermodynamic equation

There is a deep difference in the mathematical structur
the Euler and geostrophic mean field equations. Although
positive temperatures~b.0!, Dc52v~c! is a monotone in-
creasing function, and the usual theorems of existence
uniqueness of nonlinear elliptic equations apply@39,40#, for
negative temperatures the behavior of both systems diff
In the Euler case, the equilibrium equation turns out to
completely integrable, and can be solved, by analogy w
the sine-Gordon equation, using the inverse scattering tr
form @41#. In the geostrophic case the term ink makesv~c!
nonmonotonic, as we discussed in the introduction, and t
the free energy may have more than one minimum, so
existence and uniqueness of the solution are not guaran

A rich variety of solutions of the Euler flow appears whe
additional constraints or more complicated boundary con
tions are considered. Complicated bifurcations of the se
solutions of the thermodynamic equations are found for
stance in a bounded domain as shown by Chavanis and S
méria @42#, or in a subdomain of an unbounded field wh
the effects of circulation, impulse, and angular moment
conservation are taken into account@43#. However, in these
cases for a given set of parameters and boundary conditi
the solution of the thermodynamic equation is unique.
variance, in the geostrophic case, the fact that thev~c! rela-
tion is nonmonotonic opens the possibility of having sim
taneously different solutions.

In this section we introduce an iterative asympto
method which allows us to find explicit~particular! solutions
of Eq. ~24!. These solutions in the form of isolated vortice
are therefore representative of local thermodynamical e
librium states, and will be compared with the vortices a
pearing in the numerical simulations.

The thermodynamic state determined by the solution
equation~24!, rewritten in a form similar to Eq.~10!,

Dc52v~c!5k2c1a2ebGc2a1e2bGc, ~25!

depends on various parameters, in particularb, the inverse of
an energy, andG a circulation. The combinationbG appears
8-10
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FIG. 6. Fit of v~c! ~from Fig. 5, LI! using function~25!. ~a! a2559.063,a1559.113, andbG520.301~solid and dashed line!. ~b!
Normalized vorticityg(c), in units of bG, and its piecewise linear approximationgL(c) ~dashed line!, in the adjacent intervalsI i( i
51,2,3), around the tangent pointsc i ~stars! and separated by the matching pointsc12, andc23 ~circles!.
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as the inverse of a characteristic amplitude of the stre
function @the coefficient in the exponentials of Eq.~25!#. For
a given initial condition, the system evolves in such a w
that a specificv–c relation establishes, as shown in Fig.
and then a specific value ofbG. In fact, after a rescaling
transformation of Eq.~25!, using 1/bG as the unit of the
stream function, the number of parameters is reduced, m
ing that for a given solution of the scaled thermodynam
equation, a whole family of states are obtained, that may
compared to the numerical results.

It is therefore convenient to rewrite Eq.~24! in terms of
the new scaled~nondimensional! variable bGc→c. This
change is equivalent to a change in the time units of
original dynamical equations~Hamiltonian of point vortices
or Euler!. Indeed, the original equations are invariant und
the scaling transformation@c→bGc, t→t/(bG)#, for arbi-
trary b. We hence have

Dc5g~c!, g~c!5k2c1a2ec2a1e2c, ~26!

whereg is the scaled vorticity, anda6 are now

a65bG2n6F E dre7cG21

. ~27!

We verify that in the new form,b andG only appear through
the combinationbG2, the number of parameters was th
reduced by one. The integral of the two last terms ofg(c) is
proportional to the mean potential vorticity, and satisfies

E drV5E dr~a1e2c2a2ec!5bG2~n12n2!.

~28!

Solutions of Eq.~26! may depend on the independent non
mensional parameters$k,n1 ,bG2% ~or n2 instead ofn1

since they are related byn21n151). Moreover, from defi-
nition ~27! of a6 we also have the integral relation
05631
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E dr~a1e2c1a2ec!5bG2. ~29!

These two relations~28! and~29!, can be interpreted as a s
of compatibility conditions relating the family of paramete
$a2 ,a1% to the set$n1 ,bG2%.

B. Vortex in a local thermodynamic state

The strong, isolated, positive vortex observed in the lo
term evolution of the LI simulation (t5600), is a good can-
didate to represent a local equilibrium state. It has a w
defined vorticity–stream function relation, at least in t

FIG. 7. Comparison of the vortex observed in the LI simulati
at t5600 ~cf. Fig. 4! and the vortex computed using the thermod
namic equation. Solid lines: two orthogonal profiles of the obser
vortex @labels~a! and ~b!#. Dot-dashed line: piecewise approxima
tion of the equilibrium vorticity~in the unscaled variables!. Thick
solid line: exact thermodynamic equilibrium vorticity.
8-11
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c*0 range~see Fig. 6!, guaranteeing that it is in a relativel
stationary state. Its vorticity distribution is, in addition, a
most axisymmetric~cf. Fig. 7 below!, facilitating analytic
calculation because it should be enough to assumec(x,y)
5c(r ), with r a polar radial coordinate, and origin placed
the vorticity maximum. We start then by fitting the scatter
points of thev~c! relation of Fig. 5~LI simulation!. The fit,
a superposition of exponentials, corresponding to the fu
tion v~c! of Eq. ~25!, is shown in Fig. 6~a!.

The observed relation is distorted in thec&0 region
by small amplitude vorticity structures surrounding t
main vortex. To minimize the effect of this noise, we ess
tially take points in thec*0 range. In addition, the dis
persion of the observed points in thev~c! graph, even in
the ‘‘main vortex’’ region, is obviously due to the influenc
of both nonstationary and viscous effects. This disp
sion introduces some error in the value of the parame
of the fit, nevertheless, in practice it turns out that seve
digits are necessary to keep the fitting curve within
point cloud. We obtainv~c!536c159.063 exp~20.301c!
259.113exp~0.301c!, and after the rescalingbGc→c with
bG520.301, we find g(c) with the parametersa25
217.778 anda15217.793, as shown in Fig. 6~b!. It is
worth noting that the functional relation just obtained, whi
is a consequence of the thermodynamic approach, is co
tent with the observed vorticity–stream function relation.

The fit g(c) is not enough to ensure that the actual v
ticity distribution satisfies Eq.~26!; we must also verify if
thesolutionobtained from this functional relation has phys
cally admissible parameters~such asn6), and the vortex
shape agrees with the observed one. Indeed, consisten
the vorticity–stream function relation of a stationary coh
ent structure with the thermodynamic theory does not m
that the structure is related to the equilibrium solution of
thermodynamic equation: this last equation might not giv
solution comparable to the observed vortex even for a fi
form g.

1. Piecewise linear approximation

Before computing an explicit solutionc of ~24!, it is en-
lightening and useful to search a piecewise linear appr
mationcL of the problem, i.e. a solution of the equation

DcL5gL~cL!, ~30!

where the functiongL is a piecewise linear approximation o
the scaled vorticityg. Details about the construction ofcL(r )
can be found in Appendix B. We show in Fig. 6~dashed line!
a gL made up ofM53 line segments. The indexL empha-
sizes that the quantity is evaluated using the piecewise lin
vorticity. In a first step we solve the approximated version
the thermodynamic equation, and then, we will use this
lution as an initial guess to numerically compute the smo
vorticity satisfying Eq.~24!.

Let us note that within this approximation, the problem
reduced to a set of solvable linear equations and matc
conditions. However, a difficulty remains, related to the fa
that the coefficientsa6 are functionals of the solutionc.
They are linked to some integral properties of the flow su
05631
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as, for instance, the mean potential vorticity~28!. To take
into account these properties it will appear necessary, als
appropriately approximate these functionals~cf. Appendix
B!. Because of this set of compatibility constraints, we
nally deal with a simplified but still nonlinear algebraic pro
lem.

The boundary conditions are specified at the radiusR of
the solution, implicitly defined bycL(R)5c150.004 and
cL(0)5cM520.542, the maximum value. The key poin
determining the shape of the solution, is that the sign of
slope in the edge region differs from the one in the co
Indeed in each interval the solution of Eq.~30! can be ex-
pressed as a superposition of~zero-order! Bessel functions;
the general solutions are

cL~r !5A3J0~k3r !1C3 , cPI 3 , 0<r ,R23, ~31!

cL~r !5A2J0~k2r !1B2Y0~k2r !1C2 ,

cPI 2 , R23,r ,R12. ~32!

cL~r !5A1K0~k1r !1B1I0~k1r !1C1 ,

cPI 1 , R12,r ,R, ~33!

where$Ai ,Bi% andCi ~with i 51,2,3) are constants fixed b
the shape ofgL ; k i are the square root of the absolute valu
of the threegL slopes;R2351.066 andR1251.797 are the
radial values where the linear solutionscL(r )ùI i are
matched. The linear approximation of the radius isRL
52.375~for details on matching conditions cf. Appendix C
available online@44#!.

The solutionDcL(r ) of Eq. ~30! is drawn in Fig. 7 in the
unscaled variables~dashed line!. It is found thatcL is a
monotone increasing function with a single minimum~a
maximum of2cL) located at the origin, as observed in th
numerical simulation. Monotony of the solution is not
trivial result: nonphysical solutions with multiple maxim
can be found by modifying the slopes ofgL . The first term in
Eq. ~33! contains the modified Bessel function K0, which
decays exponentially for larger. The behavior of the vortic-
ity tail will obviously depend on the actual values of th
coefficientsA1 andB1. However, in this intervalc is small
and the coefficient of the exponentially increasing I0(k1r )
Bessel function, must in fact be a rapidlydecreasingfunction
of the disc sizeRL @if we relax the~pseudo-!boundary con-
straintcL(0)5cM and fix the radiusRL], which should en-
sure the exponential decay ofcL or c.

Now, using the compatibility constraints we can compu
the fraction of positive vorticesn150.602 and the tempera
ture parameterbG252651. Recalling that we fixed the fre
parameterbG to be equal to20.301, we can deduceb
5(bG)2/(bG2);21.431024. We see below that the exac
~numerical! solution gives similar values, qualitatively val
dating the piecewise approximation.

2. Numerical exact solution of the thermodynamic equation

To get the exact solutionc(r ), we start fromcL and
proceed by recurrence~the convergence of the method
8-12
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proven in the online Appendix D@44#!. More precisely, we
construct an analytic continuation of the computed stre
function cL , cL

ac : the initial guess isc05cL
ac from which

the radius isR05RL . Analytic continuation is necessary t
get an asymptotic solution satisfying the boundary con
tions. IndeedR5R` , the radius ofc is a function of the
boundary conditions and might be greater than the ini
radiusRL .

The iterative procedure follows as: starting with t
known value ofcn , @Dc#n11 is computed using@Dc#n11
5g(cn); thencn11 is deduced by inversion of the laplacia
~i.e.,Dcn115@Dc#n11). At each step three constraints mu
be satisfied,~a! cn(0)5cM , ~b! cn(0) is a minimum, and
~c! Dcn(0)52vM ; the value obtained in the simulation
vM520.98 ~see the Fig. 6!. As can be shown, these con
straints being true forn50 by construction, remain true fo
any n. The radius of the solutionR5R(n) is by definition
such that the vorticityvn(R)50.15 ~;0.5 in unscaled units
see Fig. 6!. In Fig. 8, we show the evolution of the physic
parameters, i.e.,b(n), n1(n), G(n) andR(n), as a function
of the number of iterationsn. We note that, owing to the
chosen initial condition, convergence of the scheme is v
fast and givesb521.05 1023, n150.652, G5288, andR
52.25 ~for n→`).

As expected, the radius of the solutionv(r ) is similar to
the one we get by the piecewise linear approximation,
shown in Fig. 7. In fact, it turns out thatv(r )
;g(cL(r )/bG)/bG: the method of inserting the solutioncL
obtained usinggL into g can be interpreted as an accelera
convergence procedure equivalent to take the limitM→`
~also see Appendix D online@44#!. We observea posteriori
thatM53 has given qualitative accurate results in reprod
ing the exact solution of the thermodynamic equation. T
agreement between the the two methods is rather good
the fraction of positive vortices~0.602 and 0.652!. There is
however a significant difference between the values obta
for the bG2 parameter. Two reasons may explain such a

FIG. 8. Evolution of the parametersb, n1 , G andR as a func-
tion of the number of iterationsn showing a rapid convergence o
the scheme.
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ference, first the sensitivity of the nonlinear algebraic pro
lem in the shape ofgL @see Eqs.~B2!–~B4!#, and then the
kind of parametric dependency which is exponential forbG2

and only linear forn6 .

C. Discussion

We first note that, as expected, the temperature is nega
~positive temperature states are homogenous!, and that, in
agreement with its physical definition, the positive vort
densityn1 is in the range@0,1#. From a mathematical poin
of view, the definition ofn1 does not restrict its admissibl
values to the interval@0,1#. A priori, only a limited set of
values of parameters (a2 ,a1) is compatible with this con-
straint. In other words, there was a selection of the para
eters (a2 ,a1) by the dynamics, which resulted to be com
patible with the hypothesis made to obtain t
thermodynamics equations. This is a striking confirmation
the relevant character of the thermodynamical approach w
only two species of point vortices~with circulation values
6G!. Indeed, one could think that to reproduce the results
the simulations, one would have to take an infinity number
vortex ‘‘species,’’ having different circulations. In fact, th
thermodynamic equation~24! deduced with a distribution o
positive and negative vortices of equal circulation, turn o
to be sufficient to reproduce the observed state.

Another hypothesis used in this construction was that,
the given set of the parameters$a2 ,a1%, the stream func-
tion should be strictly decreasing~with r ), in order to match
the observed vortex. This is not necessarily the case for
bitrary values of these parameters, and it may result i
vortex possessing, for instance, more than one maximum
even, in the absence of solution at all. However, for the
rameters found in the simulation, this property could be
spected, and the shapes of the observed and computed
ces,a posteriori agreed. This is an important point whic
also means that the long time evolution of the system
consistent with the formation of localized thermodynam
states, in the form of coherent structures.

In Fig. 7, we display two orthogonal cuts of the vorte
profile observed in the LI simulation@the solid lines labeled
~a! and~b!#. These cuts pass through the vorticity maximu
which should be the axis of symmetry of the vortex. W
indeed see, on the one hand, that the main vortex is alm
axially symmetric and, on the other hand, that some ot
smaller vortex structures are present only in the bound
region of the vortex. We also superposed on the same fig
the calculated solutions~dashed line and thick solid line!
obtained using the thermodynamic theory. To solve t
equation we used an approximated method based in a p
wise fit. We obtained a solution having a maximum sign
cantly lower than the actual one, in part because the co
tion at r 50 was applied to the stream functionc(0)5cM
and not directly to the vorticity. The numerical method co
sisted in an iterative process based on a step by step re
ment of the piecewise linear approximation. This meth
turns out to be rapidly convergent and gives a vortex v
close to the observed one.
8-13
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It is worth noting that the value of the parameters defin
the shape of the vortex, as for instanceR and cM in the
piecewise approximation, are strongly dependent. This
plies that the shape of the vortex is extremely sensitive
variations in their values. For example, if instead ofR'2.4
we usedR52.2, the maximum of the vorticity would attai
a value around 5 instead of 3. Therefore, the error in
computed profile is rather small~the allowed range of con
sistent parameters is small!.

The size of the region in local equilibrium must obvious
be much larger than the interaction lengthl. The solution we
obtained occupies a region of characteristic sizeR, which can
be interpreted as the ‘‘box’’ lengthl B we mentioned in Sec. I
We verify that l !R; l B&L. In general, the simulation
show that the system evolves to a state with several w
differentiated regions in local equilibrium; in simulation K3
four of such regions coexist, in simulation LI1 two we
separated positive and negative vortices are present. Ea
these regions have their own set of thermodynamic par
eters. The processes of merging of like sign vortices, wh
have created these regions, appears to be faster than the
to get a global equilibrium. The obtained value of the po
tive circulation fractionn1 , larger than 1/2 (n1.n2), is a
reflect of this situation. Global equilibrium requires equal
n15n2 .

In this approach we neglected some effects which
modify the vorticity–stream function relation as for examp
the possible departures from the Boltzmann distribution
the viscosity. Indeed, we observed in the simulations that
vorticity tend to vary slower than exponentially at large a
plitudes ~see also the simulations presented by Mattha
et al. @31#, and Segre and Kida@21#!. The thermodynamic
theory based on a continuous distribution of vorticity, a
taking into account the whole family of invariants, of Robe
and Somme´ria @17#, and Miller et al. @18#, gives a Fermi
distribution ~which in the special 2-species case impli
V;tanh~c!! rather than a Boltzmann distribution as given
the present point vortex theory~V;sinh~c!!. The Boltzmann
approximation is valid in the limitubGcu!1 and in our case
the maximum value ofubGcu is about 0.5. In other words, w
are near the limit where the Boltzmann approximation
valid ~dilute gas or dilute vorticity approximation!. Besides,
the damping effect due to the viscosity, which is stronger
the vorticity than on the stream function, may also expl
this flatness of the observed vorticity–stream function re
tion.

In summary, the vortex obtained using the thermodyna
equation is in agreement with the vortex observed in
simulation, which confirms that the flow evolves to sta
~coherent structures! locally in thermodynamical equilib-
rium.

V. CONCLUSIONS

In this paper we studied the motion of a rotating flu
layer in two-dimensional decaying turbulence, with char
teristic temporal variations much smaller than the rotat
frequency. The resulting quasi-geostrophic flow is ma
ematically analogous to the ion drift motion in a magnetiz
05631
g

-
o

e

ll

of
-

h
ime
-

n

d
e

-
s

t

s

n
n
-

ic
e
s

-
n
-
d

plasma. We studied the phenomenology of this system
direct numerical simulation, using a pseudospectral code
avoid the concentration of energy at small scales, which m
induce numerical instabilities, a viscous term has been ad
in the simulation.

It has been shown that in this regime of decaying of
initial random state, the Rossby lengthl play an essential role
in the relaxation process towards equilibrium states. Inde
at variance to the Euler dynamics which corresponds to
special casel 51`, no global quasistationary state i
reached despite the very long simulation time, of hundred
eddy turnover periods~and up to times of the same order
the typical viscous time!, whenl is small compared with the
characteristic length of the box. We observed instead that
finite l, the system evolves towards spatiallylocalizedqua-
sistationary states. The typical life times of these state
much larger than their turnover time, and may reach the
der of the viscous time. A similar scaling of the flow com
plexity with its size was also noted for the Hasegawa-Mim
system@12#.

The observed long-lived vortices, which appear afte
first rapidly evolving stage dominated by vortex merging, a
well separated coherent structures, generally surrounde
small amplitude vorticity fluctuations. The coherent stru
tures evolve inside regions of nonvanishing mean vortic
separated by strong gradients sometimes having a s
length comparable to the interaction length. One import
property of these coherent structures, is that they obe
vorticity–stream function relation~this may be taken as th
definition of the coherent structure@12#!. Therefore, the
question about the nature of these states and their relatio
some thermodynamic equilibrium state arises naturally.

In order to characterize these quasi-equilibrium states,
have developed a thermodynamical theory, using a point
tex approach. The goal of this theory is to obtain the m
probable vorticity distribution, in the sense of the entrop
The difference with respect to the usual theories of therm
dynamic hydrodynamics, is that we apply this approach
to the whole system, but only to the regions staying in
quasi-stationary state. This approach allows an easier jus
cation of the different approximations needed to obtain
mean thermodynamic vorticity equation. One condition
the validity of the thermodynamical approach is that the s
tem of point vortices be ‘‘mixing’’@38,45#. In fact, as our
goal was to apply thermodynamics to a subsystem, that i
some localized region and for a limited period of time, t
assumption of mixing, and even of the existence of the th
modynamic limit is less restrictive than in the general case
the global relaxation of Euler flows because of the prese
of energy fluctuations. Moreover, our approach using po
vortices, instead of continuous distribution of vorticity,
coherent with the local equilibrium assumption: firstly, a
arbitrary distribution of vorticity can be fitted by a set o
point vortices at a given time; secondly, the error in the
does not grow in time, if the number of point vortices ten
to infinity, this is precisely the thermodynamic limit.

We used the canonical ensemble and worked with a lo
functional action instead of the nonlocal point vortex Ham
tonian. We obtained a mean field equation for the most pr
8-14
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able vorticity distribution by minimizing the free energ
functional. We showed that this equation possesses not
global equilibrium solutions~as in the Euler case!, but can
also describe localized structures, in agreement with our g
of describing local thermodynamic states.

The thermodynamic equation is a nonintegrable and n
linear integrodifferential equation. To solve this equation
proceeded first with an approximated method using a pie
wise linear fit of the vorticity–stream function relation; the
we used this method as the base of an iteration algorithm
solve the equation numerically. The asymptotic method
lowed us to compute explicit solutions and to reproduce
main properties of the vorticity distribution.

From the numerically exact solution we checked that,
to typical fluctuations around the boundary of the vorte
there is a very good correspondence between the therm
namic state, solution of the mean field equation, and
observed vortex in the numerical simulations~having the
same parameters!. The observed and computed vortices a
similar, with comparable amplitudes and occupying regio
having the same size. The temperature of this state is n
tive, and the proportion of positive circulation is greater th
the negative one. This last property emphasize the local c
acter of the state as its thermodynamic parameters are d
ent from the global ones~the mean vorticity is of course
zero!. This clearly shows, and this is one of the main co
clusions of the present work, that the coherent structu
naturally formed during the system’s long term evolution, a
in fact local thermodynamicalequilibrium states. It would be
interesting to test these theoretical results by experiment
ing for instance, a device similar to the one used by
Driscoll group@24#. In order to obtain the effects related
the potential vorticity, the particles in the device should ha
a non-negligible Larmor radius.
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APPENDIX A: NUMERICAL METHOD

The spatial discretization is made using fast Fourier tra
forms. Nonlinear terms are first computed in real space
each time step, and after transformed back to Fourier sp
We use the 2/3 rule for antialiasing. Each Fourier mode
the stream function, saya(t), satisfies an equation of th
form

ȧ~ t !5La~ t !1N„a~ t !…, ~A1!

whereL is the linear term andN(a) the nonlinear one. One
time step a(t1Dt) consists of a predictor stepã5ã(t
1Dt),

ã5a~ t2Dt !1~eLDt2e2LDt!a~ t !12DtN„a~ t !…,
~A2!
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which is a modified leapfrog approach, and in a correc
step,

a~ t1Dt !5a~ t !1
1

2
~eLDt/22e2LDt/2!~a~ t !1ã!

1
Dt

2
@N~a~ t !!1N~ ã!#. ~A3!

The algorithm is globally second order in time, and the no
linear term is computed twice per step. The exponentials
the predictor step ensure exact integration in absence of
linearity. The corrector step is centered aroundDt/2. This
algorithm is a modified version of one of the Gazdag tim
differencing schemes@46#.

APPENDIX B: PIECEWISE LINEAR APPROXIMATION

In order to obtain explicit approximate solutions of th
system~26!–~29! describing the distribution of vorticity in
an equilibrium state, we develop an algorithm based on
substitution of the transcendental functionv~c! by a piece-
wise linear function. In this way the problem reduces to a
of solvable linear problems, and matching conditions. Ho
ever, a difficulty remains, related to the fact that coefficie
a6 are functionals of the solutionc and are linked to some
integral properties of the flow such as, for instance, the m
potential vorticity~28!. To take into account these propertie
it will appear necessary, also, to appropriately model a
approximate these functionals. Because of this set of c
patibility constraints, we will finally deal with a simplified
but still nonlinear algebraic problem.

We first construct the functiongL(c), a piecewise ap-
proximation ofg(c) ~see below Fig. 6, for an example!. For
any set of intervals$I i% i 51

M , disjoints and covering thec
axis, and any set of numbers$c i% i 51

M with c iPI i , we define

gL~c!5g8~c i !~c2c i !1g~c i !, cPI i , i 51, . . . ,M .
~B1!

M is the number of intervals wheregL is linear andg8(c i) is
the derivative ofg with respect toc at the pointc i . In that
way, we clearly satisfy thatg andgL are tangent at any poin
c i and, in the limitM tending to infinity and length(I i) tend-
ing to zero for everyi, gL approachesg. Of course in a
specific case a finite value ofM is enough to obtain a satis
factory approximate solution of Eq.~24!.

However, we immediately see that condition~28! cannot
be satisfied by this form ofg without changing also the in
tegral constraints. Indeed, once the parametersa6 chosen,
and found the solution of Eq.~26! with g replaced bygL ,
one may compute the left and right hand sides of Eq.~28!
separately. Clearly, by construction they will appear in ge
eral to be different. In order to preserve the compatibil
conditions ~28! and ~29!, it is necessary tosimultaneously
change bothg(c) and the functional form of the paramete
a6 .

The simplest self-consistent piecewise linear formulat
of the equilibrium vorticity equation is, in addition to ap
8-15
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proximation ~B1!, to linearize at the same time condition
~28! and ~29!. To this end, we write

Dc5~A2
i 1A1

i 1k2!~c2c i !1g~c i !, cPI i , ~B2!

where the new constantsA6
i 5a6e7c i satisfy by definition

g(c i)5A2
i 2A1

i 1k2c i ~obviously, g8(c i)5A2
i 1A1

i

1k2). We also impose

(
i 51

M E
Ji

dr@~A2
i 2A1

i !1~A2
i 1A1

i !~c2c i !#

5bG2~n22n1!, ~B3!

the mean vorticity condition, and

(
i 51

M E
Ji

dr@~A2
i 1A1

i !1~A2
i 2A1

i !~c2c i !#5bG2,

~B4!

the ‘‘temperature’’ condition. In Eqs.~B3! and~B4! the inte-
gration domain is over the sets$rPJi% belonging to the fluid
space domainA. The sets$rPJi% are the image, inr -space,
of the intervalsI i in c space.

The problem reduces then to solving Eqs.~B2!–~B4! in a
given region of the flow, where a well defined relation b
tween vorticity and current function is satisfied, comp
mented with adequate boundary conditions. If this relat
actually represents a state close to a local thermodyna
equilibrium with a specific set of parameters, the solution
Eq. ~24! having the same parameters, must exist and a
id

ch
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have the same shape as the observed vortex. The compa
of the numerical simulations with the states of local therm
dynamic equilibrium, solution of Eq.~24! consists in the
following steps. The first step~i! is to fit the observedv –c
relation ~seen in numerical simulations! with the function
v~c! @as defined in~25!#, this fixes the value of the param
etersbG and a6 , and after scaling of the stream functio
the functiong(c); the second step~ii ! consists in defining
the piecewise linear functiongL ~using the nondimensiona
form!, in particular the intervalsI i and the pointsc i , which
determineA6 ; in the third step~iii ! one solves the Helm-
holtz equations in each imageJi of I i ~which are not known
a priori!, and the matching and boundary conditions, to o
tain the approximated stream functionc(r); next, in the
fourth step~iv!, using Eqs.~B3! and~B4! one determines the
global parametersn1 andbG2. If the parameters are phys
cally acceptable~for instancen1P@0,1#, or b,0!, and the
vortex shape compares well with the observed one, we m
conclude that the region analyzed is in a state of local th
modynamic equilibrium.

For fixedM ~the number of linear pieces ofgL) this algo-
rithm gives an approximate solution of the full nonline
problem. The convergence of the algorithm, as the value
M increases~i.e., increasing the number of linear intervals!,
is discussed in Appendix D~online! @44#. Here we use this
procedure to obtain a solution from theobservedvorticity–
stream function relation~relation whichfixesthe value of the
parameters!. Obviously, it also may be used to obtain sol
tions satisfying some boundary conditions independently
any observed vorticity distribution.
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